Full metadata record
DC FieldValueLanguage
dc.contributor.author潘業忠en_US
dc.contributor.authorYeh-Jong Panen_US
dc.contributor.author翁志文en_US
dc.contributor.authorChih-Wen Wengen_US
dc.date.accessioned2014-12-12T02:45:43Z-
dc.date.available2014-12-12T02:45:43Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009222803en_US
dc.identifier.urihttp://hdl.handle.net/11536/76545-
dc.description.abstract考慮一個具有Q-多項式性質的距離正則圖Γ,假設Γ的直徑D至少為3且其相交參數 a_1=0且a_2≠0,我們將證明下列(i)-(iii)是等價的: (i) Γ具有Q-多項式性質且不含長度為3的平行四邊形。 (ii) Γ具有Q-多項式性質且不含任何長度為i的平行四邊形,其中 。 (iii) Γ具有古典參數(D,b,α,β),其中b,α,β是實數,且b<-1。 而當條件(i)-(iii) 成立時,我們證得Γ具有3-bounded性質。利用這個性質,我們可以證明其相交參數c_2等於1或2;且如果c_2=1,則 (b,α,β) = (-2, -2,((-2)^{D+1}-1)/3)。zh_TW
dc.description.abstractLet Γ denote a distance-regular graph with Q-polynomial property. Assume the diameter D of Γ is at least 3 and the intersection numbers a_1=0 and a_2≠0. We show the following (i)-(iii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3. (ii) Γ is Q-polynomial and contains no parallelograms of any length i for 3≦i≦D. (iii) Γ has classical parameters (D,b,α,β),for some real constants b,α,β with b<-1. When (i)-(iii) hold, we show that Γ has 3-bounded property. Using this property we prove that the intersection number c_2 is either 1 or 2, and if c_2=1 then (b,α,β)=(-2,-2,((-2)^{D+1}-1)/3).en_US
dc.language.isoen_USen_US
dc.subject距離正則圖zh_TW
dc.subject無三角形zh_TW
dc.subjectDistance-regular Graphen_US
dc.subjectTriangle-freeen_US
dc.title無三角形且含五邊形之距離正則圖zh_TW
dc.titleTriangle-free Distance-regular Graphs with Pentagonsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 280301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.