Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 潘業忠 | en_US |
dc.contributor.author | Yeh-Jong Pan | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chih-Wen Weng | en_US |
dc.date.accessioned | 2014-12-12T02:45:43Z | - |
dc.date.available | 2014-12-12T02:45:43Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009222803 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/76545 | - |
dc.description.abstract | 考慮一個具有Q-多項式性質的距離正則圖Γ,假設Γ的直徑D至少為3且其相交參數 a_1=0且a_2≠0,我們將證明下列(i)-(iii)是等價的: (i) Γ具有Q-多項式性質且不含長度為3的平行四邊形。 (ii) Γ具有Q-多項式性質且不含任何長度為i的平行四邊形,其中 。 (iii) Γ具有古典參數(D,b,α,β),其中b,α,β是實數,且b<-1。 而當條件(i)-(iii) 成立時,我們證得Γ具有3-bounded性質。利用這個性質,我們可以證明其相交參數c_2等於1或2;且如果c_2=1,則 (b,α,β) = (-2, -2,((-2)^{D+1}-1)/3)。 | zh_TW |
dc.description.abstract | Let Γ denote a distance-regular graph with Q-polynomial property. Assume the diameter D of Γ is at least 3 and the intersection numbers a_1=0 and a_2≠0. We show the following (i)-(iii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3. (ii) Γ is Q-polynomial and contains no parallelograms of any length i for 3≦i≦D. (iii) Γ has classical parameters (D,b,α,β),for some real constants b,α,β with b<-1. When (i)-(iii) hold, we show that Γ has 3-bounded property. Using this property we prove that the intersection number c_2 is either 1 or 2, and if c_2=1 then (b,α,β)=(-2,-2,((-2)^{D+1}-1)/3). | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 距離正則圖 | zh_TW |
dc.subject | 無三角形 | zh_TW |
dc.subject | Distance-regular Graph | en_US |
dc.subject | Triangle-free | en_US |
dc.title | 無三角形且含五邊形之距離正則圖 | zh_TW |
dc.title | Triangle-free Distance-regular Graphs with Pentagons | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.