标题: 倾斜横向等向性材料承受三向度点荷重的三维位移与应力基本解
Three-Dimensional Fundamental Solutions of Displacements and Stresses in an Inclined Transversely Isotropic Materials Subjected to three-Dimensional Point Loads
作者: 胡廷秉
Hu, Tin-Bin
廖志中
王承德
Liao, Jyh-Jong
Wang, Cheng-Der
土木工程学系
关键字: 应力;位移;倾斜横向等向性材料;三维傅立业转换;二维傅立业转换;拉普拉司转换;displacements;Stresses;Inclined transversely isotropic;full-space;half-space;Triple Fourier transforms;Double Fourier transforms;Laplace transform;Rock anisotropy.
公开日期: 2008
摘要: 本论文主要探讨横向等向性材料在横向等向面与水平面呈倾斜状况下,承受三向度点荷重在无限或半无限空间中,三维位移与应力的基本解。一般而言,在无限空间或半无限空间中,运动或力平衡方程式为偏微分方程式(Partial Differential Equations)。傅立业转换(Fourier Transform)与拉普拉司转换(Laplace Transform),是常用来解决无限空间与半无限空间边界值问题(Boundary Value Problems)的有效方法。先针对变数x与y部分进行二维傅立业转换(Double Fourier Transform),将偏微分方程式转换成常微分方程式(Ordinary Differential Equations)。本论文提出三种方法来求解前述常微分方程式,以获得无限空间与半无限空间的应力及位移解析解。第一种方法,利用待定系数法及分离变数法直接求解受点荷重后的非齐性(Nonhomogeneous)常微分方程式,在无限或半无限空间中之齐性解(Homogeneous Solution)及特解(Particular Solution)。第二种方法是将无限空间区分为三个区域 (区域2-上半平面) 、 (虚拟空间) 及 (区域1-下半平面),或是半无限空间区分为两个区域 (虚拟空间) 及 (区域1-下半平面),而作用之点荷重在无限空间是作用在 ,半无限空间是作用在 。在区域1及区域2内,力平衡方程式的右边并无力量作用,故可视为齐性方程式。接着分别考量无限空间中区域1、区域2及虚拟空间或半无限空间中区域1及虚拟空间的组合边界值条件。第三种方法,在无限空间中针对变数z进行傅立业转换,能将前面所求出之常微分方程式转换成多项式方程式。这种方法同时针对变数x, y和z进行傅立业转换,故也可以称之为三维傅立业转方法(Triple Fourier Transforms)。换句话说,在无限空间中针对x, y和z进行三维傅立业转换,可以将偏微分方程式转换成多项式方程式。在半无限空间中,利用前面二维傅立业转换得到的常微分方程式,再针对变数z进行拉普拉司转换,同样可得到多项式方程式。因此可求得在三维傅立业转换域的无限空间位移解( )及在二维傅立业及拉普拉司转换域半无限空间位移解( )。接着将前面所求得不同转换域的解进行逆转换分别为三维傅立业逆转换(Inverse Triple Fourier Transforms)或二维傅立业及拉普拉司逆转换(Inverse Double Fourier and Laplace Transforms)。利用这种转换方式可明确的将作用在倾斜的横向等向性材料三维点荷重的应力及位移解析解求出。本解析解的主要影响参数包括(1)横向等向面的旋转角度(2)各个材料参数的异向度(3)几何位置参数(4)三维的点荷重的形式。
最后本研究比较王承德与廖志中(1991)的解析解,并针对影响参数对位移与应力影响加以探讨,发现,在无限空间中,当材料是均质、线弹性及横向等向面平行水平方向时,所求得的解有一致的结果。在半无限空间中,利用本方法所求出承受点荷重的解与王承德与廖志中的结果有明显差异。
Three-dimensional fundamental solutions of displacements and stresses due to three-dimensional point loads in a transversely isotropic material, where the planes of transverse isotropy are inclined with respect to the horizontal loading surface, are presented in this thesis. Generally, the governing equations for infinite or semi-infinite solids are partial differential equations. The Fourier and Laplace integral transforms are commonly two efficient methods for solving the corresponding boundary value problems of full or half space. Employing the Fourier transform, the partial differential equations can be simplified as ordinary differential equations (ODE). Then, three distinct approaches were used to solve the ODE and the solutions were presented for both infinite and semi-infinite solids in this thesis. Firstly, we solve traditionally the nonhomogeneous ordinary differential equations by the methods of undetermined coefficients and separate variables Secondly, the method of an imaginary space was proposed for deriving the solutions of the problems. Thirdly, the method of algebraic is adopted for deriving the solutions for both full space and half space problems. Finally, the present fundamental solutions are derived by performing the required triple inverse Fourier transforms, or double inverse Fourier and Laplace transforms. These transformations are powerful to generate the displacements and stresses resulting from the three-dimensional point loads, acting in an inclined transversely isotropic material.
The yielded solutions demonstrate that the displacements and stresses are profoundly influenced by: (1) the rotation of the transversely isotropic planes (□), (2) the type and degree of material anisotropy (E/E□, □/□□, G/G□), (3) the geometric position (r, □, □), and (4). the types of three-dimensional loading (Px, Py, Pz). The proposed solutions are exactly the same as those of Wang and Liao (1999) if the full-space is homogeneous, linearly elastic, and the planes of transversely isotropy are parallel to the horizontal loading surface. Additionally, a parametric study is conducted to elucidate the influence of the above-mentioned factors on the displacements and stresses. Computed results reveal that the induced displacements and stresses in the planes of transversely isotropic are parallel to the horizontal loading surface of isotropic/transversely isotropic rocks by a vertical point load are quite different from those from Wang and Liao (1999). Therefore, in the fields of practical engineering, the dip at an angle of inclination should be taken into account in estimating the displacements and stresses in a transversely isotropic rock subjected to applied loads.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT008916817
http://hdl.handle.net/11536/77546
显示于类别:Thesis


文件中的档案:

  1. 681701.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.