標題: | 互補式金氧半導體技術於微波積體電路之應用 CMOS Technology Applied to Microwave Integrated Circuits |
作者: | 周美芬 張俊彥 溫瓌岸 Chun-Yen Chang Kuei-Ann Wen 電子研究所 |
關鍵字: | 高頻電路設計;RF circuit design |
公開日期: | 2005 |
摘要: | 本論文針對應用至無線區域與寬頻網路之互補式金氧半(CMOS)射頻傳送接收器之射頻電路提出晶片整合導向之系統化設計。設計考量涵蓋了通訊標準規格、電路的行為模式、電路設計到封裝模型、射頻/基頻共同驗證的方法以及跨製程整合。對於無線寬頻網路之標準提出直接轉換傳送接收器架構之系統分析,並針對部份關鍵電路進行設計實做。
首先以0.18 um互補式金氧半製程技術設計應用於無線寬頻接收器前端之3-10-GHz頻段低雜訊放大器。此低雜訊放大器採用兩級堆疊交錯調整之共射級放大器架構,其中兩級分別諧振於不同頻率,以達成低功耗和超寬頻之設計目標。並設計應用於無線寬頻傳送器前端之前級放大器採用低功率電流共用散佈並接放大器架構,使PMOS與NMOS電晶體偏壓於相同直流電流,來達成低功耗和超寬頻之設計目標。
實驗結果驗證上述寬頻放大器電路架構的優點。
再者,針對於各種無線區域網路之標準提出2.4/5GHz雙頻直接轉換傳送器架構之系統分析,並針對混波器關鍵電路進行設計實做。此混波器配有雙頻可切換負載,能夠操作於5-GHz無線區域網路應用之高頻段與2.4-GHz之低頻段;並能將差動信號轉單端信號以降低後級功率放大器之功耗。。配合本文提出之以Gilbert-Cell混波器結構為主體之自動設計流程,以0.18 um互補式金氧半製程進行電路實作,實驗結果驗證此混波器電路架構的優點。
此外,本文開發可以大幅地降低導線-介電層-導線結構之電容值的製程技術,以電漿後處理增加內連線的熱穩定度以提高製程整合度,改善信號延遲及耦合。最後,針對低溫共燒多層陶瓷與射頻電路之整合應用,以0.25 um互補式金氧半製程技術設計應用於無線區域網路前端之壓控振盪器,整合以低溫共燒多層陶瓷,研討SoP晶片整合設計於射頻電路之應用性。 The dissertation presents the radio frequency integrated circuit designs of direct conversion CMOS radio transceiver for wireless LAN and ultra wide-band applications based on integration considerations. The design considerations cover from standard specifications, circuit behaviors, schematic designs to package models as well as multi-process integration. Direct conversion architecture is proposed and analyzed for various wireless LAN and ultra wide-band applications, and some of the key building blocks are designed and implemented. First a 3-10-GHz low noise amplifier designed in 0.18-um CMOS technology for the receive path of ultra wide-band systems is presented. The proposed LNA employing stagger tuning technique consists of two stacked common-source stages with different resonance frequencies to achieve low power consumption and wide operating bandwidth. A wideband amplifier for the transmit path of ultra wide-band systems is also designed, implemented and measured, which employs current reuse distributed amplifier with PMOS and NMOS transistors reusing the same bias current to achieve the design goals of low power consumption and wide operating bandwidth. In addition, a highly integratable dual-band mixer equipped with a current combine dual-band load is designed and implemented in a 0.18-um CMOS technology for dual-band mixing and differential to single operation at both 2.45 and 5-GHz IEEE 802.11a/b/g wireless LAN frequency bands. The experimental results demonstrate the ability of functional integration for two frequency bands with a switchable dual-band load design. A plasma post treatment technique is developed to enhance the thermal stability of the low dielectrics in interconnects for process integration while the signal delay and cross coupling are improved at the same time. The integration example of CMOS voltage control oscillator with multi-level substrate is also presented to demonstrate the feasibility of system-on-a-package integration solution. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT008611803 http://hdl.handle.net/11536/78235 |
Appears in Collections: | Thesis |