标题: 利用声场特征及光流影像定位之全方向运动平台
Localization of an Omni-directional Platform Using Sound field Characteristics and Optical Flow Sensing
作者: 张永融
Yung-Jung Chang
胡竹生
Jwu-Sheng Hu
电控工程研究所
关键字: 机器人;定位;robot;localization
公开日期: 2005
摘要: 本论文提供在室内环境中的机器人一套完整且低成本的定位方法,其整合了声场特征定位法以及光流影像定位法。声场特征定位法是由个人电脑端的双声道麦克风收录机器人在不同位置所发出的声音资讯,并依据各位置上收录声音的相位差以及大小比分布,预先建立高斯混合声场地标模型;使机器人在模型环境中移动并发出声音时,可藉由将新的声音资讯代入模型中运算,以侦测机器人所在的绝对位置。而光流影像定位法是由两个光流感测器对地面侦测各别的位移资讯,并加以演算合并以求得机器人的相对位移资讯。在此更进一步地利用机率格方法整合以上两种定位资讯,以提升绝对位置定位的可靠度。
本论文亦提出以全方向运动为基础的机器人平台,相较于传统轮式平台,此平台具有较高的运动灵活度;并配合嵌入式网路技术加以整合,达成分散式运算及远端操控机器人的目的。
This thesis proposes an integrated and low-cost method of localization, which can estimate the absolute location of a mobile robot in a complex indoor environment by using sound field characteristics and optical flow sensing. The first method, Localization using sound field characteristics, record the sound information by two channel microphone of personal computer, and establish Gaussian mixture-sound field landmark model according the phase difference and magnitude ratio distributions between two microphone at each landmark. When the robot moves and generates sound in the modeled environment, we can bring the new sound information into the landmark models to detect it’s location. The second method, Localization using optical flow sensing, use two optical flow sensors to estimate the relative movement information of the mobile robot. Moreover, we utilize the position probability grids method to integrate these two methods for improving the reliability of estimating the absolute location.
In this thesis, we also propose the omni-directional platform offer a higher mobility and the embedded Ethernet technology is used to achieve the objectives of distributed computation and remote control.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009312626
http://hdl.handle.net/11536/78316
显示于类别:Thesis


文件中的档案:

  1. 262601.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.