Full metadata record
DC FieldValueLanguage
dc.contributor.author江冠諭en_US
dc.contributor.authorGuan Yu Jiangen_US
dc.contributor.author謝世福en_US
dc.contributor.authorS. F. Hsiehen_US
dc.date.accessioned2014-12-12T02:53:05Z-
dc.date.available2014-12-12T02:53:05Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009313550en_US
dc.identifier.urihttp://hdl.handle.net/11536/78366-
dc.description.abstract為了補償非線性失真在免持聽筒或是視訊會議系統,回音的消除,通常使用一個無記憶性的多項式結合NLMS演算法的適應性濾波器。在傳統上,多項式採用次方級數展開的形式;而在本篇論文中,為了提昇非線性適應性濾波器的收斂速度我們使用正交多項式的非線性適應性濾波器。不論是級數型多項式或是正交多項式,我們都分析出它們的收斂理論值,並且從電腦模擬結果得知和我們的理論值是符合的,而模擬的結果也說明了我們提出的方式的確有較好的收斂性。 除了使用適應性的方式之外,在實際的語音傳送之前,我們使用了訓練序列信號的方式來評估非線性濾波器的係數。我們分析它們的收斂理論值,並且由電腦模擬得到驗證,而且在訊雜比不佳的情況下,它的收斂值會比適應性濾波器來得佳。zh_TW
dc.description.abstractIn order to compensate the nonlinear distortion in the hands -free telephones or teleconferencing system, a memoryless polynomials NLMS adaptive filter can be used to cancel nonlinear acoustic echo. Conventional polynomials model employs a power-series expansion. In this thesis we propose an orthogonal polynomials adaptive filter and perform theoretical convergence analysis of residual echo power which proves its faster convergence rate owing to the reduced eigen spread of the input signal. Computer simulations justify our analysis and show the improved performance of the proposed nonlinear acoustic echo canceller. In addition to the adaptive method, the training sequence (TS) can be used to estimate the coefficients of the nonlinear acoustic echo cancellation. The convergence rate of the training method is derived analytically. Computer simulations show that the TS method performs better than the NLMS method at low SNR.en_US
dc.language.isoen_USen_US
dc.subject非線性zh_TW
dc.subject回音消除zh_TW
dc.subject收斂性分析zh_TW
dc.subjectNonlinearen_US
dc.subjectEcho Cancellationen_US
dc.subjectConvergence Analysesen_US
dc.title非線性回音消除之收斂性分析zh_TW
dc.titleConvergence Analyses of Nonlinear Acoustic Echo Cancellationen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 355001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.