标题: 自聚性二六族半导体量子点之成熟机制与特性研究
Ripening dynamics and characterization on self-assembled II-VI semiconductor quantum dots
作者: 賴怡仁
Yi-Jen Lai
周武清
Wu-Ching Chou
電子物理系所
关键字: 二六族半导体;量子点;成熟;分子束磊晶;硒化镉/硒化锌;碲化锌/硒化锌;II-VI semiconductor;qunatum dots;ripening;molecular beam epitaxy;CdSe/ZnSe;ZnTe/ZnSe
公开日期: 2008
摘要: 本论文旨于探讨自聚性二六族半导体量子点之成熟机制与特性分析。利用分子束磊晶法在砷化镓基板上成长自聚性硒化镉/硒化锌与碲化锌/硒化锌两种量子点结构,藉此研究各种效应(包括部份覆盖层、活性氧原子以及快速热退火处理)对于成熟机制的影响。我们发现对于硒化镉/硒化锌异质结构而言,260 oC是成长量子点最理想的基板温度。藉由原子力显微镜的观察,证实硒化镉量子点结构的形成是从二维转变为三维的成长模式,此转变的临界厚度(沾湿层;wetting layer)约2.5个原子层。随着硒化镉沈积量增加,我们观察到量子点的成长模式发生一连串的转变,从起先的二维磊晶模式(Frank van der Merve mode)转变为稳定的三维成长模式(Stranski–Krastanow growth mode),最后进入成熟模式(ripened mode)。利用一个图示的模型,我们描述了整个量子点成长模式的转变。
针对成熟机制,我们进一步做了一系列的研究:利用硒化镉/硒化锌量子点探讨硒化锌部份覆盖层以及活性氧原子对于成熟机制的影响。从表面形貌的观察,发现部份覆盖层会加快成熟机制的速度,这是由于部份覆盖层增加了应变能量所造成的结果;当硒化锌部份覆盖层厚度低于3个原子层,随着部份覆盖层厚度增加,其光激萤光的能量呈现明显的红位移,这个结果与原子力显微镜观察到的结果是一致的。另一方面,在硒化锌缓冲层表面铺上活性氧原子也可以加快成熟机制的速度,活性氧原子在硒化锌缓冲层表面可能会改变其局部的化学性质,并且在表面上扮演凝核中心的角色,因此,在硒化镉沈积厚度相同的条件下,成长在有加活性氧原子处理的硒化锌缓冲层表面上的量子点密度会较高,且尺寸较小。此外,我们也利用碲化锌/硒化锌第二型能带结构的量子点探讨快速热退火对于成熟机制与能带弯曲效应的影响。自聚性碲化锌/硒化锌量子点也是以从二维转变为三维的成长模式形成量子点结构。当量子点经过400 oC以上的热退火处理,其光激萤光的能量会发生很大的红位移,这是由于当热退火温度超过400 oC,热能启动了成熟机制,使得某些量子点因为聚集了邻近小量子点的材料而尺寸变大。在时间解析的光激萤光实验中,较快的再结合通道被抑制了,暗示快速热退火处理减小了碲化锌/硒化锌量子点的能带弯曲效应。最后,我们利用改变激发光强度的光激萤光实验证实了碲化锌/硒化锌量子点的能带弯曲效应被减小是由于热退火启动成熟机制造成量子点尺寸变大的关系。
This dissertation is devoted to study the ripening dynamics of the self-assembled II-VI semiconductor quantum dots (QDs). The self-assembled CdSe/ZnSe and ZnTe/ZnSe QDs, which were grown on GaAs (001) substrate by molecular beam epitaxy (MBE), were employed to study various effects on the ripening dynamics. In the CdSe/ZnSe QDs system, the optimum growth temperature was found to be 260 oC. The Stranski–Krastanow (SK) growth mode was confirmed clearly by atomic force microscopy (AFM) images. The thickness of the wetting layer of the CdSe QDs is about 2.5 mono-layers (MLs). As the coverage increases, a complete transfer of the QD growth mode from the Frank van der Merve (FM) mode to the SK mode, followed by the ripened mode, was observed. A schematic diagram of the growth mechanism of self-assembled CdSe QDs was presented.
The effects of ZnSe partial capping and atomic oxygen on the ripening dynamics were investigated in the CdSe QDs system. AFM images show that the ripening of QDs is dramatically accelerated by the deposit of a ZnSe partial capping layer. The driving force of ripening enhancement is attributed to the increasing strain energy with capping thickness. For a ZnSe partial capping layer of below 3 MLs, photoluminescence (PL) exhibits a clear red-shift with increasing ZnSe MLs. It is attributed to the increasing size of the CdSe QDs with the ZnSe partial capping, in a manner that is consistent with the results of the AFM study. On the other hand, the ripening of CdSe QDs can be significantly enhanced by introducing atomic oxygen and was confirmed by a PL study. The atomic oxygens on the surface of ZnSe buffer layer probably change the local chemistry of the ZnSe surface and play the role of the nucleation sites. Therefore, the incorporations of atomic oxygen cause the increasing density of QDs and the decreasing size of CdSe QDs when the CdSe coverage thickness is kept the same.
Moreover, we investigated the effect of rapid thermal annealing (RTA) on ripening and band-bending effect for the type-II ZnTe/ZnSe QDs with 3.0 MLs. The self-assembled ZnTe/ZnSe type-II QDs were grown with the SK mode. The PL spectra of samples that were annealed at temperatures of over 400 oC reveal a strong red-shift in the peak energy. This significant red-shift is understood by the QD ripening, the increasing of the dot size is caused by the migration of atoms from the neighboring smaller QDs, activated by RTA process. In a time-resolved PL study, the fast recombination channel in annealed QDs is suppressed, implying that RTA reduces band-bending effect of ZnTe/ZnSe QDs. Finally, studies of the dependences of excitation power demonstrate that the observed reduction in the band-bending effect is attributed to the increase in the dot size upon the RTA process.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009321808
http://hdl.handle.net/11536/78988
显示于类别:Thesis


文件中的档案:

  1. 180801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.