標題: | 耦合微分的緊緻數值方法解一階KDV方程 Coupled Derivatives Compact Schemes for One-Dimensional KdV Equation |
作者: | 李雅羚 Ya-Ling Li 賴明治 Ming-Chih Lai 應用數學系所 |
關鍵字: | 耦合微分;緊緻數值方法;KDV方程;Coupled Derivatives;Compact Schemes;KdV Equation |
公開日期: | 2006 |
摘要: | 這篇論文主要之目的是使用耦合微分的緊緻數值方法來解一階KDV方程。首先,我們先回顧一階和二階耦合微分的緊緻數值方法。接著,我們會學習一階和三階耦合微分的緊緻數值方法。再來,我們簡要地介紹Runge-Kutta Methods。最後,我們會給一些例子並且列出數值結果,然後做出結論。 The primary objective of this thesis is to use coupled derivatives compact schemes (CD) for solving one-dimensional KDV equation. First, we review the coupled first and second derivatives scheme and then we study the coupled first and third derivatives scheme. Next, we introduce roughly the Runge-Kutta methods. Finally, we give some examples and show numerical results, and the conclusion follows. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009322507 http://hdl.handle.net/11536/78996 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.