标题: | 不可溶界面活性剂之流体模拟数值方法 Numerical methods for interfacial flows with insoluble surfactant |
作者: | 曾昱豪 Tseng, Yu-Hau 赖明治 Lai, Ming-Chih 应用数学系所 |
关键字: | 不可压缩流体;动态接触面问题;沉浸边界法;界面活性剂;界面流问题;Navier-Stokes equations;moving contact line problems;Immersed boundary method;surfactant;interfacial flow problems |
公开日期: | 2008 |
摘要: | 本论文之主要目的在于发展一个简易且精确的数值方法,来处理含有不可溶界面活性剂的界面流问题。长久以来,界面流问题的数值模拟已经成为了解各种相关流体之现象的热门管道。在这个论文中,我们先介绍一个有关界面流问题(包含moving contact line problems)的数学模型,并且提出一种immersed boundary method来处理二维流体中带有不可溶界面活性剂之界面的数值模拟。这个数学模型可以写成一般常见的immersed boundary method的公式,包含Eulerian座标系下的流体方程式以及建立在Lagrangian座标系中有关界面的变数,而这两个座标系之间各个变数的转换,则是藉由Dirac delta function来连结。界面上的作用力主要依靠表面张力的影响,而界面上的表面张力则随着界面活性剂的分布而有所不同。对于moving contact line problems,我们必需在contact line附近额外提供一个unbalanced Young force来趋动界面。利用Lagrangian markers来追踪界面,我们可以导出一个简单的界面活性剂方程。整个数值方法主要可分为几个部分,首先计算界面所提供给流体的力量,再利用投影法算出流体的速度并内插求得界面移动的速度;算出新的界面位置之后,在界面的切线方向引入人工的速度场以达到界面上网格的均匀分布;此间,界面活性剂方程也会受到这个人工切线速度的影响,所以活性剂方程需要做一些调整,而活性剂在界面上的浓度则经由这个调整过后的方程式来决定。在研究界面活性剂影响界面流问的过程中,最重要的一个关键在于保持界面活性剂的不可溶特性,而本论文主要的贡献在于提出一个新的对称的数值离散方法,来处理界面活性剂方程式,基于这个方法,活性剂在数值模拟过程中可以完全的被保持住。在数值结果方面,包括剪切流中水泡的形变及附着在固态物质上液滴等。本论文提出的数值方法可以有效的处理有表面活性剂的moving contact line problems。 Numerical simulations of the interfacial flows have been a popular way to study a variety of fluid-world phenomena for a long time. In this dissertation, a mathematical model for interfacial flow problems (including the moving contact line problems) is demonstrated and an immersed boundary method is proposed for the simulation of two-dimensional fluid interfaces with insoluble surfactant. The governing equations are written in a usual immersed boundary formulation where a mixture of Eulerian flow and Lagrangian interfacial variables are used and the linkage between these two set of variables is provided by the Dirac delta function. The immersed boundary force comes from the surface tension which is affected by the distribution of surfactant along the interface. In particular, the unbalanced Young force should be applied in the moving contact line problems to derive the interface movement near moving contact lines. By tracking the interface in the Lagrangian manner, a simplified surfactant transport equation is derived. The numerical method involves solving the Navier-Stokes equations on a staggered grid by a semi-implicit pressure increment projection method where the immersed interfacial forces are calculated at the beginning of each time step. Once the velocity field and interfacial configurations are obtained, an equi-distributed technique of the Lagrangian markers is applied to force the markers to reach a uniform distribution in physical space. Meantime, the surfactant transport equation should be modified due to the effect of the tangential velocity arising from the equi-distributed process. Then the surfactant concentration is updated using the modified transport equation. The essential purpose of this dissertation is to study the effects of insoluble surfactants in the interfacial flow problems. Since it is important to maintain the insolubility of the surfactant concentration, the main contribution of this work is to propose a new symmetric discretization for the surfactant concentration equation such that the total mass of surfactant is conserved numerically. In numerical experiments, a bubble rises in a gravitational field, a vesicle deforms in a shear flow, and a hydrophilic or hydrophobic drop adheres to a solid substrate, are typical examples to observe the effects of the surfactant. To our best knowledge, the numerical method we propose here provides a wonderful chance to simulate moving contact line problems with insoluble surfactant. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009322807 http://hdl.handle.net/11536/79026 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.