標題: | 使用型態篩選法及動態部分函數作影像擷取 Image Retrieval Using Morphological Granulometry and Dynamic Partial Function |
作者: | 顏佩君 Pei Jun Yan 薛元澤 Yuang-Cheh Hsueh 資訊科學與工程研究所 |
關鍵字: | 影像擷取;數學型態學;篩選法;image retrieval;mathematical morphology;granulometry |
公開日期: | 2005 |
摘要: | 近年來,多媒體資料的大量成長。使得如何發展對這些資料作儲存、瀏覽、檢索以及擷取的技術成為一項重要的議題。在影像擷取的研究已有許多,但鮮少有使用到因為能即時應用而著稱的數學型態學。因此,本篇論文的目的是改善由J.S.Wu提出的morphological primitives的準確度,並且提出另一個型態運算子—篩選法作為影像的特徵。實驗結果顯示,morphological primitives使用動態部分函數為相似度量測最佳有30%的準確度改善。而另一方面在大部分的影像中,granulometric histogram比起color histogram,color moment primitives,以及morphological primitives有較佳的準確度。 In recent years, there is an explosive growth of multimedia data. How to develop techniques for storage, browsing, indexing, and retrieval them efficiently is a significant issue. There are many researches on image retrievals, but very few usage of mathematical morphology which is impressive because of making real-time applications possible. Our goal is to improve precisions of morphological primitives which was introduced by J.S.Wu and propose another morphology operator: morphological granulometry as an image feature. From experimenal results, image retrieval using morphological primitives with dynamic partical function have improvement up to 30%. On the other hand, granulometric histogram has better precisions than those of color histogram, color moment primitives, and morphological primitives in most cases. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009323616 http://hdl.handle.net/11536/79148 |
顯示於類別: | 畢業論文 |