完整後設資料紀錄
DC 欄位語言
dc.contributor.author呂立方en_US
dc.contributor.authorLi-Fang Luen_US
dc.contributor.author陳明哲en_US
dc.contributor.authorMing-Jer Chenen_US
dc.date.accessioned2014-12-12T03:03:11Z-
dc.date.available2014-12-12T03:03:11Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009411710en_US
dc.identifier.urihttp://hdl.handle.net/11536/80621-
dc.description.abstract藉由散射矩陣的方法,可以推導出背向散射係數,再利用蒙地卡羅模擬証明。組成背向散射係數的兩個重要的參數─ kBT layer的寬度和平均自由路徑─也在論文中有進一步地討論;kBT layer的寬度的物理解析式模型建立在源極到通道上假設的拋物線能障上,也藉由實驗以及蒙地卡羅模擬得到驗證。藉由蒙地卡羅模擬得到在入射處的速度分佈推斷平均自由路徑的縮短源自於載子熱效應,然而在拋物線能障的情況下因為沒有熱載子效應,使得平均自由路徑維持定值。zh_TW
dc.description.abstractThrough the scattering matrix approach, the backscattering coefficient is derived and it is verified by Monte Carlo simulations. Two important parameters, kBT layer's width and mean-free-path, constituting the channel backscattering have been taken into account. A parabolic barrier oriented compact model has been physically derived for kBT layer's width. The validity of this compact model has been corroborated experimentally and by Monte Carlo simulation results. As for mean-free-path, the carrier heating as the origin of reduced mean-free-path is inferred on the basis of the simulated carrier velocity distribution at the injection point. Strikingly, for the parabolic potential case, the mean-free-paths remain consistent: apparent mean-free-path = mean-free-path. This indicates the absence or weakening of the carrier heating in the layer of interest, valid only for a parabolic potential barrieren_US
dc.language.isoen_USen_US
dc.subject背向散射zh_TW
dc.subject蒙地卡羅zh_TW
dc.subjectbackscatteringen_US
dc.subjectMonte Carloen_US
dc.title奈米尺寸金氧半場效電晶體通道背向散射:蒙地卡羅模擬與物理模型zh_TW
dc.titleNanoscale MOSFETs Channel Backscattering: Monte Carlo Simulation and Physical Modelen_US
dc.typeThesisen_US
dc.contributor.department電子研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 171001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。