标题: 动态自动对焦演算法
On Dynamic Auto-Focusing Algorithms
作者: 林耀仚
Yao-Hsuan Lin
杭学鸣
Hsueh-Ming Hang
电子研究所
关键字: 自动对焦;搜寻演算法;画面转换;物体晃动;变焦追踪;Auto-Focus;search algorithm;scene change;local object motion;zoom tracking
公开日期: 2006
摘要: 自动对焦,是数位影像加强技术中重要的议题之一。近年来数位相机/摄影机的普及,随着科技的进步,影像品质逐渐受到更多的重视。影像加强是影像处理技术的核心,影像加强的目的是追求真实,修正影像与人眼感官相符。自动对焦和自动曝光、自动白平衡,并称3A演算法,是目前影像加强的主要演算法。静态影像的自动对焦演算法已经有很多的研究成果,唯动态影像的自动对焦演算法尚没有显着的讨论。本篇论文改良整合现有的自动对焦技术,提出一个动态自动对焦的演算法。

动态自动对焦与静态自动对焦的主要差异,在于搜寻演算法没有所谓起始和终止,必须不断地递回搜寻。论文先分析数位摄影机的基本架构,并讨论其回馈系统的特性。讨论自动对焦的结果,会受到系统本身哪些的限制。我们针对画面转换、物体晃动、焦距变动几个现象,改良现有的爬山搜寻演算法,维持自动对焦系统的效能和稳定性。我们以有限状态机器的形式,藉由设定专门的转换参数,控制搜寻演算法的状态转换,来实现动态自动对焦演算法。我们利用亮度指标来判断换面转换的发生,利用门槛加强的搜寻演算法,处理物体晃动的问题。并提出一个线性的预测模型,来改善焦距变动的对焦效率。最后我们以软体模拟的形式,来验证我们的自动对焦演算法能对动态影像运作。
Auto-Focus is one of the most significant research issues in the recent digital image enhancement technology. Its importance increases due mainly to the widespread use of digital video/imaging devices in this new millennium. The stationary image auto-focusing system is a long-standing research topic. In this thesis, we modify and improve the conventional auto-focusing algorithms and integrate them into a dynamic auto-focusing algorithm.
The major difference between a still image and a video auto-focusing system is the search algorithm. Still image search algorithms often have specific start and end, but the video application urges a continuous searching routine. First, we study the digital camera system and the feedback control theory. Through these studies, we understand how the system structure limits the auto-focusing result and the principles of designing a good auto-focusing system, which is a special type of control system.
Since the search algorithm is critical, we improve the climbing search algorithm for particularly the dynamic environments such as scene change, local object motion, and zoom tracking. This proposed search algorithm working on the video is the core of our auto-focusing algorithm. Then, we develop our search algorithm using a finite state machine structure. We design specific transition conditions and state transition table to match the requirements of dynamic auto-focusing applications. A luminance-based metric helps to detect the scene change. We adopt a threshold climbing search algorithm to solve the local motion problem. And the zoom tracking processing is accelerated with the assistance of a well-designed linear prediction model. Finally, we show that this algorithm is reliable and efficient by a series of software simulations.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009411712
http://hdl.handle.net/11536/80623
显示于类别:Thesis


文件中的档案:

  1. 171201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.