Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorWu, Yi-Chienen_US
dc.contributor.authorKao, Shin-Shinen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.date.accessioned2014-12-08T15:10:33Z-
dc.date.available2014-12-08T15:10:33Z-
dc.date.issued2008-12-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.camwa.2008.07.030en_US
dc.identifier.urihttp://hdl.handle.net/11536/8063-
dc.description.abstractAssume that m, n and s are integers with m >= 2, n >= 4, 0 <= s < n and s is of the same parity of m. The generalized honeycomb tori GHT(m, n, s) have been recognized as an attractive architecture to existing torus interconnection networks in parallel and distributed applications. A bipartite graph G is bipancyclic if it contains a cycle of every even length from 4 to vertical bar V(G)vertical bar inclusive. G is vertex-bipancyclic if for any vertex nu is an element of V(G), there exists a cycle of every even length from 4 to vertical bar V(G)vertical bar that passes nu. A bipartite graph G is called k-vertex-bipancyclic if every vertex lies on a cycle of every even length from k to vertical bar V(G)vertical bar. In this article, we prove that GHT(m, n, s) is 6-bipancyclic, and is bipancyclic for some special cases. Since GHT(m. n. s) is vertex-transitive, the result implies that any vertex of GHT(m. n. s) lies on a cycle of length l, where l >= 6 and is even. Besides, GHT(m, n, s) is vertex-bipancyclic in some special cases. The result is optimal in the sense that the absence of cycles of certain lengths on some GHT(m, n. s)'s is inevitable due to their hexagonal structure. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHoneycomb torusen_US
dc.subjectPancyclicen_US
dc.subjectBipancyclicen_US
dc.subjectVertex-bipancyclicen_US
dc.subjectk-vertex-bipancyclicen_US
dc.titleVertex-bipancyclicity of the generalized honeycomb torien_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.camwa.2008.07.030en_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume56en_US
dc.citation.issue11en_US
dc.citation.spage2848en_US
dc.citation.epage2860en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000261357400010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000261357400010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.