完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Chih-Huen_US
dc.contributor.authorChen, Bor-Senen_US
dc.contributor.authorLee, Bore-Kuenen_US
dc.contributor.authorLee, Tsu-Tianen_US
dc.contributor.authorLiu, Chien-Nan Jimmyen_US
dc.contributor.authorSu, Chauchinen_US
dc.date.accessioned2014-12-08T15:10:36Z-
dc.date.available2014-12-08T15:10:36Z-
dc.date.issued2008-12-01en_US
dc.identifier.issn1051-8215en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSVT.2008.2004926en_US
dc.identifier.urihttp://hdl.handle.net/11536/8103-
dc.description.abstractA novel prediction scheme is proposed for real-time MPEG video to predict the burst and long-range dependent traffic. The trend and periodic characteristics of MPEG video traffic are fully captured by a proposed stochastic state-space dynamic model. Then a recursive H. filtering algorithm is proposed to estimate traffic for long-range prediction. Simulation results based on real MPEG traffic data show that the proposed scheme has superior performance and lower complexity than some adaptive neural network methods, such as TDNN, NARX, and Elman neural networks.en_US
dc.language.isoen_USen_US
dc.subjectH(infinity) filteren_US
dc.subjectlong-range dependenceen_US
dc.subjectMPEG videoen_US
dc.subjectstate-space methoden_US
dc.titleLong-Range Prediction for Real.-Time MPEG Video Traffic: An H(infinity) Filter Approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSVT.2008.2004926en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGYen_US
dc.citation.volume18en_US
dc.citation.issue12en_US
dc.citation.spage1771en_US
dc.citation.epage1775en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000261546000012-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000261546000012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。