完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 卜文強 | en_US |
dc.contributor.author | Wen-Chiang Pu | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chih-Wen Weng | en_US |
dc.date.accessioned | 2014-12-12T03:06:39Z | - |
dc.date.available | 2014-12-12T03:06:39Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009422528 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/81307 | - |
dc.description.abstract | 在這篇論文裡,我們專注在漢米爾頓圖上。首先由一個半徑為D的漢 米爾頓圖建構一個偏序集P。在P中的元素同構於半徑小於D 的漢米 爾頓圖。我們從反面來定義P。我們也獲得一些P 的計算性質。然後, 我們試著在P中建構一個Z字型的結構,計算在P中有多少Z字型。 我們也計算在一些條件下Z 字型的數目。 | zh_TW |
dc.description.abstract | In this thesis, we focus on Hermitian forms graphs. Firstly, we construct a poset P from a Hermitian forms graph Herq(D), where D is the diameter. The elements in P are those subgraphs of Herq(D) which are isomorphic to Herq(t) for 0<t<D. We order P by reversed inclusion. Some counting properties of P are obtained. Then, we try to construct a zigzag-like structure in P so that we can count the number of zigzags inside P. We also count the number of zigzags in some conditions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 距離正則圖 | zh_TW |
dc.subject | 漢米爾頓圖 | zh_TW |
dc.subject | distance-regular graph | en_US |
dc.subject | Hermitian graph | en_US |
dc.title | 由一個荷米爾遜圖建構偏序集 | zh_TW |
dc.title | The Poset constructed from a Hermitian Forms Graph | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |