完整後設資料紀錄
DC 欄位語言
dc.contributor.author卜文強en_US
dc.contributor.authorWen-Chiang Puen_US
dc.contributor.author翁志文en_US
dc.contributor.authorChih-Wen Wengen_US
dc.date.accessioned2014-12-12T03:06:39Z-
dc.date.available2014-12-12T03:06:39Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009422528en_US
dc.identifier.urihttp://hdl.handle.net/11536/81307-
dc.description.abstract在這篇論文裡,我們專注在漢米爾頓圖上。首先由一個半徑為D的漢 米爾頓圖建構一個偏序集P。在P中的元素同構於半徑小於D 的漢米 爾頓圖。我們從反面來定義P。我們也獲得一些P 的計算性質。然後, 我們試著在P中建構一個Z字型的結構,計算在P中有多少Z字型。 我們也計算在一些條件下Z 字型的數目。zh_TW
dc.description.abstractIn this thesis, we focus on Hermitian forms graphs. Firstly, we construct a poset P from a Hermitian forms graph Herq(D), where D is the diameter. The elements in P are those subgraphs of Herq(D) which are isomorphic to Herq(t) for 0<t<D. We order P by reversed inclusion. Some counting properties of P are obtained. Then, we try to construct a zigzag-like structure in P so that we can count the number of zigzags inside P. We also count the number of zigzags in some conditions.en_US
dc.language.isoen_USen_US
dc.subject距離正則圖zh_TW
dc.subject漢米爾頓圖zh_TW
dc.subjectdistance-regular graphen_US
dc.subjectHermitian graphen_US
dc.title由一個荷米爾遜圖建構偏序集zh_TW
dc.titleThe Poset constructed from a Hermitian Forms Graphen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 252801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。