標題: 智財碼和非覆集合族的關連探討
Codes and Cover-Free Families for Copyright Protection
作者: 汪政緯
Cheng-Wei Wang
翁志文
Chih-Wen WENG
應用數學系所
關鍵字: 智財碼和非覆集合族的關連探討;Codes and Cover-Free Families for Copyright Protection
公開日期: 2007
摘要: TA 碼,IPP 碼, SFP 碼和FP 碼的應用在數位資料的保護上有著重 要的價值,目的在預防未授權產品的非法拷貝。在此論文中,我們造 了些上述碼,並研究碼的基本性質和探討碼與cover free family 的 關係。根據cover free family 的定義,我們構造了些新的關係矩陣,並証明上述矩陣為disjunct matrices。用布林代數的語言,即我們允許某種程度上的容錯率。文末我們蒐集了前人關於SFP 碼及IPP碼簡單且重要的構造法。
The applications of TA codes, IPP codes, SFP codes and FP codes play animportant role in the protection of digital data. The destination of these codes is to prevent an unauthorized copy. Some new and old examples ofthese codes are given. This thesis studies basic properties of the above codes and the relationships between theses codes and cover free family.Therefore, we construct some new incident matrices and prove these matrices are disjunct matrices. According to out construction, in the language of pooling designs, the construction allows some test errors. In the end, we collect some simple and important constructions of SFPcodes and IPP codes.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009422531
http://hdl.handle.net/11536/81309
Appears in Collections:Thesis


Files in This Item:

  1. 253101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.