标题: | 强Menger连通性的研究 On the Strong Menger Connectivity |
作者: | 胡智凯 Jr-Kai Hu 谭建民 Jimmy J.M Tan 资讯科学与工程研究所 |
关键字: | 连通性;connectivity |
公开日期: | 2006 |
摘要: | 连通性是连接网路上ㄧ个重要的量测因子。此篇论文中我们由介绍Menger定理及强Menger连通性开始。我们在类超立方体及配对合成网路上研究此强Menger连通性。首先,我们证明所有属于n维度超立方体的图即使有n-2个坏点,仍保有强Menger连通性。更进ㄧ步我们证明:假若我们限制此图在坏了某些点之后,每个点仍至少有两个邻近的点是好的,则此时n维度超立方体的图坏点数可达到2n-5仍保有强Menger连通性。最后,我们证明更广义种类的图,称为配对合成网路,满足某些条件之后仍保有强Menger连通性。 Vertex connectivity is an important parameter in interconnection networks.In this thesis we start this thesis by introducing Menger's Theorem and strongly Menger connected property. Then we extend strongly Menger connected property in n-dimensional hypercube-like networks and matching composition networks. First,we show that all graphs in the class of n-dimensional hypercube-like networks have some strongly Menger-connected property,even if these graphs are with n-2 fault vertexs.Furthermore, if we restrict some conditions for each vertex having at least two fault-free adjacent vertices, the class of hypercube-like networks have the strongly Menger-connected property, even if these graph are with 2n-5 fault vertexs. Last, we show that a more general class of graphs, called Matching Composition Networks, satisfying some conditions can have strongly Menger-connected property. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009455571 http://hdl.handle.net/11536/82094 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.