Title: | 半導體量子井、線、點模型的異質介面近似方法與矩陣縮減方法 Interface Approximation and Matrix Reduction for Semiconductor Quantum Well, Wire, and Dot Models |
Authors: | 高誠志 劉晉良 Jinn-Liang Liu 應用數學系所 |
Keywords: | 異質介面條件;異質介面一次近似;異質介面二次近似;特徵值收斂性;矩陣縮減;interface condition;linear interface approximation;quadratic interface approximation;convergency of eigenvalue;matrix reduction |
Issue Date: | 2003 |
Abstract: | 在這一篇論文中有二個部分。在第一個部分裡,我們討論了量子井 (quantum well)、量子線 (quantum wire)、量子點 (quantum dot) 的離散方法。我們使用不同的離散方法在模型中的異質介面條件 (interface condition) 上,並且去比較所得到的結果。因為異質介面條件是非常重要的,所以我們對它們使用不同的離散方法並且得到不同收斂行為結果的最小特徵值。在第二個部分裡,我們使用一些替代方法去縮減特徵值系統Ax=λx中矩陣A的維度,而這樣所得到的最小特徵值會跟原矩陣A所求得的最小特徵值非常相近。這是因為其波函數 (wave function) 非常平順,所以當網格點非常細時在解整個系統就有一些不必要的計算。因此,我們使用了一些替代方法去縮減矩陣A的維度而我們仍然可以得到非常精確的最小特徵值。 There are two parts in the thesis. In the first part, we discuss the discretization in the quantum well, wire, and dot. For the interface condition, we use different discretizations to the model equation, and compare the results. Because the interface condition is very important, we use different discretizations to the interface condition and get different convergent results about the smallest eigenvalue. In the second part, we use some substitutions to reduce the dimension on the matrix A in the eigenvalue system Ax=λx, and get the smallest eigenvalue which is very close to the one of the original matrix A. Since the wave function can be very smooth, there is no need in solving the whole system with very fine mesh. Therefore, we use some substitutions to reduce the dimension of the matrix A and we can still get very accurate eigenvalue. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009022513 http://hdl.handle.net/11536/82391 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.