Full metadata record
DC FieldValueLanguage
dc.contributor.authorJian, Peng-Chung Jangen_US
dc.contributor.authorLiu, Tzeng-Fengen_US
dc.contributor.authorTsai, Chuan-Meien_US
dc.contributor.authorTsai, Ming-Shihen_US
dc.contributor.authorChang, Chia-Chingen_US
dc.date.accessioned2014-12-08T15:10:56Z-
dc.date.available2014-12-08T15:10:56Z-
dc.date.issued2008-09-03en_US
dc.identifier.issn0957-4484en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0957-4484/19/35/355703en_US
dc.identifier.urihttp://hdl.handle.net/11536/8369-
dc.description.abstractDNA is a one-dimensional nanowire in nature, and it may not be used in nanodevices due to its low conductivity. In order to improve the conducting property of DNA, divalent Ni(2+) are incorporated into the base pairs of DNA at pH >= 8.5 and nickel DNA (Ni-DNA) is formed. Conducting scanning probe microscopy (SPM) analysis reveals that the Ni-DNA is a semiconducting biopolymer and the Schottky barrier of Ni-DNA reduces to 2 eV. Meanwhile, electrochemical analysis by cyclic voltammetry and AC impedance shows that the conductance of Ni-DNA is better than that of native DNA by a factor of approximately 20-fold. UV spectroscopy and DNA base pair mismatch analyses show that the conducting mechanism of Ni-DNA is due to electrons hopping through the pi-pi stacking of DNA base pairs. This biomaterial is a designable one-dimensional semiconducting polymer for usage in nanodevices.en_US
dc.language.isoen_USen_US
dc.titleNi(2+) doping DNA: a semiconducting biopolymeren_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0957-4484/19/35/355703en_US
dc.identifier.journalNANOTECHNOLOGYen_US
dc.citation.volume19en_US
dc.citation.issue35en_US
dc.citation.spageen_US
dc.citation.epageen_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
Appears in Collections:Articles