標題: | Subtree Sizes in Recursive Trees and Binary Search Trees: Berry-Esseen Bounds and Poisson Approximations |
作者: | Fuchs, Michael 應用數學系 Department of Applied Mathematics |
公開日期: | 1-九月-2008 |
摘要: | We study the number of subtrees on the fringe of random recursive trees and random binary search trees whose limit law is known to be either normal or Poisson or degenerate depending on the size of the subtree. We introduce a new approach to this problem which helps us to further clarify this phenomenon. More precisely, we derive optimal Berry-Esseen bounds and local limit theorems for the normal range and prove a Poisson approximation result as the subtree size tends to infinity. |
URI: | http://dx.doi.org/10.1017/S0963548308009243 http://hdl.handle.net/11536/8418 |
ISSN: | 0963-5483 |
DOI: | 10.1017/S0963548308009243 |
期刊: | COMBINATORICS PROBABILITY & COMPUTING |
Volume: | 17 |
Issue: | 5 |
起始頁: | 661 |
結束頁: | 680 |
顯示於類別: | 期刊論文 |