完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, H-Len_US
dc.contributor.authorChou, T.en_US
dc.contributor.authorChou, C-Pen_US
dc.date.accessioned2014-12-08T15:11:07Z-
dc.date.available2014-12-08T15:11:07Z-
dc.date.issued2008-08-01en_US
dc.identifier.issn0954-4070en_US
dc.identifier.urihttp://dx.doi.org/10.1243/09544070JAUTO270en_US
dc.identifier.urihttp://hdl.handle.net/11536/8525-
dc.description.abstractMany parameters affect the quality of the resistance spot welding (RSW) process. It is not easy to obtain optimal parameters of the RSW process in the automobile industry. Conventionally, the Taguchi method has been widely Used in engineering; however, with this method the desired results can only be obtained with the use of very discrete control factors, thus leading to uncertainty about the real Optimum. In the process to weld the low-carbon sheet steels of the auto body, the Taguchi method was used for the initial optimization of the RSW process parameters. A neural network with the Levenberg-Marquardt back-propagation algorithm was then adopted to develop the relationships between the welding process parameters and tensile shear strength of each specimen. The optimal parameters of the RSW process were determined by simulating the process parameters using a well-trained neural network model. Experimental results illustrate the Taguchi-neural approach.en_US
dc.language.isoen_USen_US
dc.subjectresistance spot weldingen_US
dc.subjectTaguchi methoden_US
dc.subjectneural networken_US
dc.titleModelling and optimization of the resistance spot welding process via a Taguchi-neural approach in the automobile industryen_US
dc.typeArticleen_US
dc.identifier.doi10.1243/09544070JAUTO270en_US
dc.identifier.journalPROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERINGen_US
dc.citation.volume222en_US
dc.citation.issueD8en_US
dc.citation.spage1385en_US
dc.citation.epage1393en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000259623900007-
dc.citation.woscount6-
顯示於類別:期刊論文


文件中的檔案:

  1. 000259623900007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。