完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Han-Linen_US
dc.contributor.authorTsai, Jung-Faen_US
dc.contributor.authorFloudas, Christodoulos A.en_US
dc.date.accessioned2014-12-08T15:11:27Z-
dc.date.available2014-12-08T15:11:27Z-
dc.date.issued2008-06-01en_US
dc.identifier.issn1862-4472en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11590-007-0061-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/8779-
dc.description.abstractThe approximation of the convex envelope of nonconvex functions is an essential part in deterministic global optimization techniques (Floudas in Deterministic Global Optimization: Theory, Methods and Application, 2000). Current convex underestimation algorithms for multilinear terms, based on arithmetic intervals or recursive arithmetic intervals (Hamed in Calculation of bounds on variables and underestimating convex functions for nonconvex functions, 1991; Maranas and Floudas in J Global Optim 7: 143-182, (1995); Ryoo and Sahinidis in J Global Optim 19: 403-424, (2001)), introduce a large number of linear cuts. Meyer and Floudas (Trilinear monomials with positive or negative domains: Facets of convex and concave envelopes, pp. 327-352, (2003); J Global Optim 29: 125-155, (2004)), introduced the complete set of explicit facets for the convex and concave envelopes of trilinear monomials with general bounds. This study proposes a novel method to underestimate posynomial functions of strictly positive variables.en_US
dc.language.isoen_USen_US
dc.subjectConvex envelopesen_US
dc.subjectConvex underestimatorsen_US
dc.subjectPosynomialsen_US
dc.titleConvex underestimation for posynomial functions of positive variablesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11590-007-0061-6en_US
dc.identifier.journalOPTIMIZATION LETTERSen_US
dc.citation.volume2en_US
dc.citation.issue3en_US
dc.citation.spage333en_US
dc.citation.epage340en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000261234500005-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000261234500005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。