Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Yi-Jiunen_US
dc.contributor.authorLan, James K.en_US
dc.contributor.authorChou, Well Y.en_US
dc.contributor.authorChen, Chiuyuanen_US
dc.date.accessioned2014-12-08T15:11:33Z-
dc.date.available2014-12-08T15:11:33Z-
dc.date.issued2011-05-13en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2010.12.061en_US
dc.identifier.urihttp://hdl.handle.net/11536/8862-
dc.description.abstractThe independent spanning trees (ISTs) problem attempts to construct a set of pairwise independent spanning trees and it has numerous applications in networks such as data broadcasting, scattering and reliable communication protocols. The well-known ISTs conjecture, Vertex/Edge Conjecture, states that any n-connected/n-edge-connected graph has n vertex-ISTs/edge-ISTs rooted at an arbitrary vertex r. It has been shown that the Vertex Conjecture implies the Edge Conjecture. In this paper, we consider the independent spanning trees problem on the n-dimensional locally twisted cube LTQ(n). The very recent algorithm proposed by Hsieh and Tu (2009) [12] is designed to construct n edge-ISTs rooted at vertex 0 for LTQ(n). However, we find out that LTQ(n) is not vertex-transitive when n >= 4; therefore Hsieh and Tu's result does not solve the Edge Conjecture for LTQ(n),,. In this paper, we propose an algorithm for constructing n vertex-ISTs for LTQ(n); consequently, we confirm the Vertex Conjecture (and hence also the Edge Conjecture) for LTQ(n),. (C) 2011 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectIndependent spanning treesen_US
dc.subjectData broadcastingen_US
dc.subjectDesign and analysis of algorithmsen_US
dc.subjectLocally twisted cubesen_US
dc.subjectHypercubesen_US
dc.subjectHypercube variantsen_US
dc.subjectParallel algorithmen_US
dc.titleConstructing independent spanning trees for locally twisted cubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2010.12.061en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume412en_US
dc.citation.issue22en_US
dc.citation.spage2237en_US
dc.citation.epage2252en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000289930300002-
dc.citation.woscount14-
Appears in Collections:Articles


Files in This Item:

  1. 000289930300002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.