Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yao-Hanen_US
dc.contributor.authorYang, Yianen_US
dc.contributor.authorYui, Norikoen_US
dc.contributor.authorErdenberger, Corden_US
dc.date.accessioned2014-12-08T15:12:30Z-
dc.date.available2014-12-08T15:12:30Z-
dc.date.issued2008-03-01en_US
dc.identifier.issn0075-4102en_US
dc.identifier.urihttp://dx.doi.org/10.1515/CRELLE.2008.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/9600-
dc.description.abstractIn this paper we are concerned with the monodromy of Picard-Fuchs differential equations associated with one-parameter families of Calabi-Yau threefolds. Our results show that in the hypergeometric cases the matrix representations of monodromy relative to the Frobenius bases can be expressed in terms of the geometric invariants of the underlying Calabi-Yau threefolds. This phenomenon is also verified numerically for other families of Calabi-Yau threefolds in the paper. Furthermore, we discover that under a suitable change of bases the monodromy groups are contained in certain congruence subgroups of Sp(4, Z) of finite index and whose levels are related to the geometric invariants of the Calabi-Yau threefolds.en_US
dc.language.isoen_USen_US
dc.titleMonodromy of Picard-Fuchs differential equations for Calabi-Yau threefoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/CRELLE.2008.021en_US
dc.identifier.journalJOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIKen_US
dc.citation.volume616en_US
dc.citation.issueen_US
dc.citation.spage167en_US
dc.citation.epage203en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000254393000007-
dc.citation.woscount17-
Appears in Collections:Articles


Files in This Item:

  1. 000254393000007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.