完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Yao-Han | en_US |
dc.contributor.author | Yang, Yian | en_US |
dc.contributor.author | Yui, Noriko | en_US |
dc.contributor.author | Erdenberger, Cord | en_US |
dc.date.accessioned | 2014-12-08T15:12:30Z | - |
dc.date.available | 2014-12-08T15:12:30Z | - |
dc.date.issued | 2008-03-01 | en_US |
dc.identifier.issn | 0075-4102 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1515/CRELLE.2008.021 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9600 | - |
dc.description.abstract | In this paper we are concerned with the monodromy of Picard-Fuchs differential equations associated with one-parameter families of Calabi-Yau threefolds. Our results show that in the hypergeometric cases the matrix representations of monodromy relative to the Frobenius bases can be expressed in terms of the geometric invariants of the underlying Calabi-Yau threefolds. This phenomenon is also verified numerically for other families of Calabi-Yau threefolds in the paper. Furthermore, we discover that under a suitable change of bases the monodromy groups are contained in certain congruence subgroups of Sp(4, Z) of finite index and whose levels are related to the geometric invariants of the Calabi-Yau threefolds. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Monodromy of Picard-Fuchs differential equations for Calabi-Yau threefolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/CRELLE.2008.021 | en_US |
dc.identifier.journal | JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | en_US |
dc.citation.volume | 616 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 167 | en_US |
dc.citation.epage | 203 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000254393000007 | - |
dc.citation.woscount | 17 | - |
顯示於類別: | 期刊論文 |