完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yao-Hanen_US
dc.contributor.authorYang, Yianen_US
dc.contributor.authorYui, Norikoen_US
dc.contributor.authorErdenberger, Corden_US
dc.date.accessioned2014-12-08T15:12:30Z-
dc.date.available2014-12-08T15:12:30Z-
dc.date.issued2008-03-01en_US
dc.identifier.issn0075-4102en_US
dc.identifier.urihttp://dx.doi.org/10.1515/CRELLE.2008.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/9600-
dc.description.abstractIn this paper we are concerned with the monodromy of Picard-Fuchs differential equations associated with one-parameter families of Calabi-Yau threefolds. Our results show that in the hypergeometric cases the matrix representations of monodromy relative to the Frobenius bases can be expressed in terms of the geometric invariants of the underlying Calabi-Yau threefolds. This phenomenon is also verified numerically for other families of Calabi-Yau threefolds in the paper. Furthermore, we discover that under a suitable change of bases the monodromy groups are contained in certain congruence subgroups of Sp(4, Z) of finite index and whose levels are related to the geometric invariants of the Calabi-Yau threefolds.en_US
dc.language.isoen_USen_US
dc.titleMonodromy of Picard-Fuchs differential equations for Calabi-Yau threefoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/CRELLE.2008.021en_US
dc.identifier.journalJOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIKen_US
dc.citation.volume616en_US
dc.citation.issueen_US
dc.citation.spage167en_US
dc.citation.epage203en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000254393000007-
dc.citation.woscount17-
顯示於類別:期刊論文


文件中的檔案:

  1. 000254393000007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。