完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKao, Shin-Shinen_US
dc.contributor.authorWu, Jui-Chiaen_US
dc.contributor.authorShih, Yuan-Kangen_US
dc.date.accessioned2014-12-08T15:12:34Z-
dc.date.available2014-12-08T15:12:34Z-
dc.date.issued2008-03-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/9646-
dc.description.abstractIn this paper, we discuss many properties of graphs of Matching Composition Networks (MCN) [16]. A graph in MCN is obtained front the disjoint union of two graphs Go and G, by adding a pet-feet matching between V(G(0)) and V(G(1)). We prove that any graph in MCN preserves the hamiltonian connectivity or hamiltonian laceability, and pancyclicity of G(0) and G(1) under simple conditions. In addition, if there exist three internally vertex-disjoint paths between any pair of distinct vertices in G(i) for i is an element of {0, 11, then so it is the case in any graph in MCN. Since MCN includes many well-known interconnection networks as special cases, such as the Hypercube Q(n), the Crossed cube CQ(n), the Twisted cube TQ(n), the Mobius cube MQ(n), and the Hypbercube-like graphs HLn, our results apply to all of the above-mentioned networks.en_US
dc.language.isoen_USen_US
dc.subjecthypercube-like graphsen_US
dc.subjectperfect matchingen_US
dc.subjecthamiltonian-connecteden_US
dc.subjectpancyclicen_US
dc.subject3*-connecteden_US
dc.titleHamiltonian connectivity, pancyclicity and 3*-connectivity of matching composition networksen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume24en_US
dc.citation.issue2en_US
dc.citation.spage615en_US
dc.citation.epage625en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000254446100019-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000254446100019.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。