標題: Piecewise linear maps, Liapunov exponents and entropy
作者: Juang, Jonq
Shieh, Shih-Feng
應用數學系
Department of Applied Mathematics
關鍵字: piecewise linear map;Liapunov exponents;entropy;ergodic theory
公開日期: 1-Feb-2008
摘要: Let L-A = {f(A,x):x is a partition of [0, 1]} be a class of piecewise linear maps associated with a transition matrix A. In this paper, we prove that if f(A,x) is an element of L-A, then the Liapunov exponent lambda(x) of f(A,x) is equal to a measure theoretic entropy h(mA,x) of f(A,x), where m(A,x) is a Markov measure associated with A and x. The Liapunov exponent and the entropy are computable by solving an eigenvalue problem and can be explicitly calculated when the transition matrix A is symmetric. Moreover, we also show that max(x) lambda(x) = max(x)h(mA,x) = log(lambda(1)), where lambda(1)is the maximal eigenvalue of A. (c) 2007 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.jmaa.2007.05.035
http://hdl.handle.net/11536/9718
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.05.035
期刊: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volume: 338
Issue: 1
起始頁: 358
結束頁: 364
Appears in Collections:Articles


Files in This Item:

  1. 000253172100028.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.