標題: | Piecewise linear maps, Liapunov exponents and entropy |
作者: | Juang, Jonq Shieh, Shih-Feng 應用數學系 Department of Applied Mathematics |
關鍵字: | piecewise linear map;Liapunov exponents;entropy;ergodic theory |
公開日期: | 1-二月-2008 |
摘要: | Let L-A = {f(A,x):x is a partition of [0, 1]} be a class of piecewise linear maps associated with a transition matrix A. In this paper, we prove that if f(A,x) is an element of L-A, then the Liapunov exponent lambda(x) of f(A,x) is equal to a measure theoretic entropy h(mA,x) of f(A,x), where m(A,x) is a Markov measure associated with A and x. The Liapunov exponent and the entropy are computable by solving an eigenvalue problem and can be explicitly calculated when the transition matrix A is symmetric. Moreover, we also show that max(x) lambda(x) = max(x)h(mA,x) = log(lambda(1)), where lambda(1)is the maximal eigenvalue of A. (c) 2007 Elsevier Inc. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.jmaa.2007.05.035 http://hdl.handle.net/11536/9718 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2007.05.035 |
期刊: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volume: | 338 |
Issue: | 1 |
起始頁: | 358 |
結束頁: | 364 |
顯示於類別: | 期刊論文 |