完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuang, Shun-Chinen_US
dc.contributor.authorHung, Wen-Liangen_US
dc.contributor.authorFu, Hsin-Chiaen_US
dc.date.accessioned2014-12-08T15:12:55Z-
dc.date.available2014-12-08T15:12:55Z-
dc.date.issued2008en_US
dc.identifier.issn0020-7721en_US
dc.identifier.urihttp://hdl.handle.net/11536/9969-
dc.identifier.urihttp://dx.doi.org/10.1080/00207720701847711en_US
dc.description.abstractThis article proposes a weighted bootstrap procedure, which is an efficient bootstrap technique for neural model selection. Our primary interest in reducing computer effort is to not resample (in the original bootstrap procedure) uniformly from the original sample, but to modify this distribution in order to obtain variance reduction. The performance of the weighted bootstrap is demonstrated on two artificial data sets and one real dataset. Experimental results show that the weighted bootstrap procedure permits an approximately 2 to 1 reduction in replication size.en_US
dc.language.isoen_USen_US
dc.subjectBayesian bootstrapen_US
dc.subjectBayesian bootstrap clonesen_US
dc.subjectbootstrapen_US
dc.subjectmodel selectionen_US
dc.subjectweighted bootstrapen_US
dc.titleWeighted bootstrap for neural model selectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207720701847711en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF SYSTEMS SCIENCEen_US
dc.citation.volume39en_US
dc.citation.issue5en_US
dc.citation.spage557en_US
dc.citation.epage562en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000254070200010-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000254070200010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。