完整後設資料紀錄
DC 欄位語言
dc.contributor.author謝國文en_US
dc.contributor.authorShieh Gwowenen_US
dc.date.accessioned2014-12-13T10:44:10Z-
dc.date.available2014-12-13T10:44:10Z-
dc.date.issued2010en_US
dc.identifier.govdocNSC99-2410-H009-004zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/99911-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2138166&docId=343540en_US
dc.description.abstract調節複廻歸已廣泛應用於兩連續式變數交互作用分析,而兩變數和其交互相乘項間的 共線性對檢測的影響,自然地成為重要議題。本文試圖探索變數間相關程度對檢測調節 效用的可能正面幫助,藉以釐清普遍以為共線性對調節複廻歸分析百害而無一利的誤 解。針對簡單雙變數及三變數交互作用模式的理論解析和數據驗證,所獲結果有助於改 變學者對變數間高度相關現象的憎惡,更提昇調節效用研究方法的實用價值。zh_TW
dc.description.abstractDue to extensive applicability and computational ease, moderated multiple regression (MMR) has been widely employed to analyze interaction effects between two continuous predictor variables. Accordingly, considerable attention has been drawn toward the supposed multicollinearity problem between predictor variables and their cross-product term. This article attempts to clarify the misconception of multicollinearity in MMR studies. The counter-intuitive yet beneficial effects of multicollinearity on the ability to detect moderator relationships are explored. Comprehensive treatments and numerical investigations are presented for the simplest interaction model and more complex three-predictor setting. The obtained results provide critical insight that not only avoids misleading interpretation but also yields better understanding of the impact of intercorrelation among predictor variables on MMR analyses.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject調節現象zh_TW
dc.subject共線性zh_TW
dc.subject檢定力zh_TW
dc.subjectmoderationen_US
dc.subjectmulticollinearityen_US
dc.subjectpoweren_US
dc.title共線性對檢測調節效用的影響zh_TW
dc.titleOn the Influence of Multicollinearity in Detection of Moderating Effectsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學管理科學系(所)zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 992410H009004.PDF

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。