標題: Polar decompositions of C-0(N) contractions
作者: Wu, Pei Yuan
應用數學系
Department of Applied Mathematics
關鍵字: C-0(N) contraction;polar decomposition;singular unitary operator;compression of the shift;finite multiplicity;defect index
公開日期: 1-Dec-2006
摘要: Let A be a bounded linear operator on a complex separable Hilbert space H. We show that A is a C-0(N) contraction if and only if A = U(I - Sigma(d)(j=1) r(j)(x(j) circle times x(j))), where U is a singular unitary operator with multiplicity d <= N, 0 < r(1),...,r(d) < 1 and x(1),...,x(d) are orthonormal vectors satisfying V{U-k x(j) : k >= 0, 1 <= j <= d} = H. For a C-0(N) contraction, this gives a complete characterization of its polar decompositions with unitary factors.
URI: http://dx.doi.org/10.1007/s00020-006-1438-0
http://hdl.handle.net/11536/11455
ISSN: 0378-620X
DOI: 10.1007/s00020-006-1438-0
期刊: INTEGRAL EQUATIONS AND OPERATOR THEORY
Volume: 56
Issue: 4
起始頁: 559
結束頁: 569
Appears in Collections:Articles


Files in This Item:

  1. 000242985000006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.