| 標題: | Polar decompositions of C-0(N) contractions |
| 作者: | Wu, Pei Yuan 應用數學系 Department of Applied Mathematics |
| 關鍵字: | C-0(N) contraction;polar decomposition;singular unitary operator;compression of the shift;finite multiplicity;defect index |
| 公開日期: | 1-十二月-2006 |
| 摘要: | Let A be a bounded linear operator on a complex separable Hilbert space H. We show that A is a C-0(N) contraction if and only if A = U(I - Sigma(d)(j=1) r(j)(x(j) circle times x(j))), where U is a singular unitary operator with multiplicity d <= N, 0 < r(1),...,r(d) < 1 and x(1),...,x(d) are orthonormal vectors satisfying V{U-k x(j) : k >= 0, 1 <= j <= d} = H. For a C-0(N) contraction, this gives a complete characterization of its polar decompositions with unitary factors. |
| URI: | http://dx.doi.org/10.1007/s00020-006-1438-0 http://hdl.handle.net/11536/11455 |
| ISSN: | 0378-620X |
| DOI: | 10.1007/s00020-006-1438-0 |
| 期刊: | INTEGRAL EQUATIONS AND OPERATOR THEORY |
| Volume: | 56 |
| Issue: | 4 |
| 起始頁: | 559 |
| 結束頁: | 569 |
| 顯示於類別: | 期刊論文 |

