標題: | Geometrical effect of bump resistance for flip-clip solder joints: Finite-element modeling and experimental results |
作者: | Liang, S. W. Chang, Y. W. Chen, Chih Liu, Y. C. Chen, K. H. Lin, S. H. 材料科學與工程學系 Department of Materials Science and Engineering |
關鍵字: | electromigration;solder;bump resistance;flip chip |
公開日期: | 1-Aug-2006 |
摘要: | The bump resistance of flip-chip solder joints was measured experimentally and analyzed by the finite-element method. Kelvin structures for flip-chip solder joints were designed and fabricated to measure the bump resistance. The measured value was only about 0.9 m Omega at room temperature, which was much lower than that expected. Three-dimensional (3-D) modeling was performed to examine the current and voltage distribution in the joint. The simulated value was 7.7 m Omega, which was about 9 times larger than the experimental value. The current crowding effect was found to be responsible for the difference in bump resistance. Therefore, the measured bump resistance strongly depended on the layout of the Kelvin structure. Various layouts were simulated to investigate the geometrical effect of bump resistance, and a significant geometrical effect was found. A proper layout was proposed to measure the bump resistance correctly. The Kelvin structure would play an important role in monitoring void formation and microstructure changes during the electromigration of flip-chip solder joints. |
URI: | http://hdl.handle.net/11536/11960 |
ISSN: | 0361-5235 |
期刊: | JOURNAL OF ELECTRONIC MATERIALS |
Volume: | 35 |
Issue: | 8 |
起始頁: | 1647 |
結束頁: | 1654 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.