完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, BCen_US
dc.contributor.authorLin, JYen_US
dc.contributor.authorYang, WPen_US
dc.date.accessioned2014-12-08T15:16:42Z-
dc.date.available2014-12-08T15:16:42Z-
dc.date.issued2006-05-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/12313-
dc.description.abstractThe classification problem is an important topic in knowledge discovery and machine learning. Traditional classification tree methods and their improvements have been discussed widely. This work proposes a new approach to construct decision trees based on discriminant functions which are learned using genetic programming. A discriminant function is a mathematical function for classifying data into a specific class. To learn discriminant functions effectively and efficiently, a distance-based fitness function for genetic programming is designed. After the set of discriminant functions for all classes is generated. a classifier is created as a binary decision tree with the Z-value measure to resolve the problem of ambiguity among discriminant functions. Several popular datasets from the UCI Repository were selected to illustrate the effectiveness of the proposed classifiers by comparing with previous methods. The results show that the proposed classification tree demonstrates high accuracy on the selected datasets.en_US
dc.language.isoen_USen_US
dc.subjectknowledge discoveryen_US
dc.subjectmachine learningen_US
dc.subjectgenetic programmingen_US
dc.subjectclassificationen_US
dc.subjectdiscriminant functionen_US
dc.subjectdecision treeen_US
dc.subjectclassifieren_US
dc.titleA classification tree based on discriminant functionsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume22en_US
dc.citation.issue3en_US
dc.citation.spage573en_US
dc.citation.epage594en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000237907900008-
顯示於類別:會議論文


文件中的檔案:

  1. 000237907900008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。