完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKao, HYen_US
dc.contributor.authorHuang, CHen_US
dc.contributor.authorLi, HLen_US
dc.date.accessioned2014-12-08T15:18:29Z-
dc.date.available2014-12-08T15:18:29Z-
dc.date.issued2005-09-01en_US
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cie.2005.06.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/13305-
dc.description.abstractThis paper proposes a dynamic Bayesian network to represent the cause-and-effect relationships in an industrial supply chain. Based on the Quick Scan, a systematic data analysis and synthesis methodology developed by Naim, Childerhouse, Disney, and Towill (2002). [A supply chain diagnostic methodlogy: Determing the vector of change. Computers and Industrial Engineering, 43, 135-157], a dynamic Bayesian network is employed as a more descriptive mechanism to model the causal relationships in the supply chain. Dynamic Bayesian networks can be utilized as a knowledge base of the reasoning systems where the diagnostic tasks are conducted. We finally solve this reasoning problem with stochastic simulation. (c) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectdynamic Bayesian networksen_US
dc.subjectdiagnostic reasoningen_US
dc.subjectsupply chain diagnosticsen_US
dc.subjectstochastic simulationen_US
dc.titleSupply chain diagnostics with dynamic Bayesian networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cie.2005.06.002en_US
dc.identifier.journalCOMPUTERS & INDUSTRIAL ENGINEERINGen_US
dc.citation.volume49en_US
dc.citation.issue2en_US
dc.citation.spage339en_US
dc.citation.epage347en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000232099000007-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000232099000007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。