完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 施朝富 | zh_TW |
dc.contributor.author | 吴光雄 | zh_TW |
dc.contributor.author | Shih, Chao-Fu | en_US |
dc.contributor.author | Wu, Kaung-Hsiung | en_US |
dc.date.accessioned | 2018-01-24T07:37:06Z | - |
dc.date.available | 2018-01-24T07:37:06Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352920 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/138969 | - |
dc.description.abstract | 积体电路(integrated circuit, IC)的制造,从设计、晶圆制程、封装到测试等,是十分精密且复杂的过程。而所谓的晶圆制程主要是指从晶片投入到晶片测试间的制造过程,其中微影制程是晶圆制程中最关键的步骤,每个IC图形皆由微影制程决定;而元件的最小线宽,也是受限于微影制程的解析能力。随着半导体制程技术的演进,积体电路的元件线宽越来越小,叠对偏移的要求也越来越严谨。而曝光机台本身的能力及稳定度是影响叠对偏移的主因,次要则是底层结构影响曝光时自动对焦的行为。 本论文在研究如何改善动态随机存取记忆体(Dynamic Random Access Memory,DRAM)的良率,研究对象为30奈米后段制程的储存节点连接接垫(Storage Node PAD,SP),使用的微影机台为ASML XT1950Hi浸润式扫描式曝光机。改善方式有1.叠对误差评估(wafer induce shift, WIS);2.临界尺寸变化评估(critical dimension, CD);3.蚀刻参数调整;4.薄膜参数调整。经由长期实验观察后,使用上述四种方式良率皆能有所改善,其中叠对误差与临界尺寸变化为主要改善方式,量化后统计可提升良率2~4%,并已将其套用在FAB生产线上提升良率。 | zh_TW |
dc.description.abstract | The process of manufacturing an integrated circuit (IC), including IC design, wafer fabrication, packaging and final testing, is an extremely precise and complicated process. The wafer fabrication processes consist of the processes from the wafer input, semiconducting processing to wafer test and yield. Lithography is the most important step in the semiconducting processing because each IC pattern is determined by the lithography process. Moreover, the limitation of the linewidth of the device is also determined by the resolution of the lithography system. The critical dimension of the IC devices is getting smaller and smaller as the semiconducting processing progresses and more rigorous requirement of the overlay shift margin is needed. The capability and stability of the exposure machine (scanner or stepper) are the primary factors to affect the overlay shift. Besides, the overlay shift is also affected by the auto focusing due to the structure of under-layer during exposure. In the present work, we study how to increase the yield of DRAM devices by improving the 30 nm Storage Node Contact PAD at backend process step. The lithography and exposure machine used in this study is ASML XT-1950Hi (Immersion Scanner). Four methods include (1) overlay shift evaluate(wafer induce shift, WIS, (2) change critical dimension (CD), (3) adjust etch process parameter and (4) adjust thin film parameter are tested. After long-term experimental observation and measurements, we find that the overlay shift and the critical dimension are the dominant factors to affect the performance. We have already applied these results on FAB production line and promoted the yield rate 2~4%. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 动态随机存取记忆体 | zh_TW |
dc.subject | 浸润式微影曝光技术 | zh_TW |
dc.subject | 关键尺寸 | zh_TW |
dc.subject | 叠对误差 | zh_TW |
dc.subject | Dynamic Random Access Memory | en_US |
dc.subject | immersion lithography | en_US |
dc.subject | critical dimmension | en_US |
dc.subject | wafer induce shift | en_US |
dc.title | 30奈米DRAM储存节点连接之良率改善 | zh_TW |
dc.title | The Study of Yield Improvement in 30 nm DRAM Storage Node Contact PAD | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 理学院应用科技学程 | zh_TW |
显示于类别: | Thesis |