Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chih-Chengen_US
dc.contributor.authorChen, Pin-Chunen_US
dc.contributor.authorChou, Teyuhen_US
dc.contributor.authorWang, I-Tingen_US
dc.contributor.authorHudec, Borisen_US
dc.contributor.authorChang, Che-Chiaen_US
dc.contributor.authorTsai, Chia-Mingen_US
dc.contributor.authorChang, Tian-Sheuanen_US
dc.contributor.authorHou, Tuo-Hungen_US
dc.date.accessioned2018-08-21T05:53:31Z-
dc.date.available2018-08-21T05:53:31Z-
dc.date.issued2018-03-01en_US
dc.identifier.issn2156-3357en_US
dc.identifier.urihttp://dx.doi.org/10.1109/JETCAS.2017.2771529en_US
dc.identifier.urihttp://hdl.handle.net/11536/144798-
dc.description.abstractAsymmetric nonlinear weight update is considered as one of the major obstacles for realizing hardware neural networks based on analog resistive synapses, because it significantly compromises the online training capability. This paper provides new solutions to this critical issue through co-optimization with the hardware-applicable deep-learning algorithms. New insights on engineering activation functions and a threshold weight update scheme effectively suppress the undesirable training noise induced by inaccurate weight update. We successfully trained a two-layer perceptron network online and improved the classification accuracy of MNIST handwritten digit data set to 87.8%/94.8% by using 6-/8-b analog synapses, respectively, with extremely high asymmetric nonlinearity.en_US
dc.language.isoen_USen_US
dc.subjectNeuromorphic computingen_US
dc.subjectRRAMen_US
dc.subjectsynapseen_US
dc.subjectmultilayer perceptronen_US
dc.titleMitigating Asymmetric Nonlinear Weight Update Effects in Hardware Neural Network Based on Analog Resistive Synapseen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JETCAS.2017.2771529en_US
dc.identifier.journalIEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMSen_US
dc.citation.volume8en_US
dc.citation.spage116en_US
dc.citation.epage124en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000429246900010en_US
Appears in Collections:Articles