標題: Solution of a nonsymmetric algebraic Riccati equation from a one-dimensional multistate transport model
作者: Li, Tiexiang
Chu, Eric King-Wah
Juang, Jong
Lin, Wen-Wei
應用數學系
Department of Applied Mathematics
關鍵字: algebraic Riccati equation;doubling algorithm;fixed-point iteration;Newton's method;reflection;transport theory
公開日期: 1-十月-2011
摘要: For the steady-state solution of a differential equation from a one-dimensional multistate model in transport theory, we shall derive and study a nonsymmetric algebraic Riccati equation B(-) -XF(-) -F(+) X + XB(+)X = 0, where F(+/-) = (I -F) D(+/-) and B(+/-) = BD(+/-) with positive diagonal matrices D(+/-) and possibly low-ranked matrices F and B. We prove the existence of the minimal positive solution X* under a set of physically reasonable assumptions and study its numerical computation by fixed-point iteration, Newton's method and the doubling algorithm. We shall also study several special cases. For example when B and F are low ranked then X* = Gamma circle(Sigma(r)(i=1)U(i)V(i)(T)) with low-ranked U(i) and V(i) that can be computed using more efficient iterative processes. Numerical examples will be given to illustrate our theoretical results.
URI: http://dx.doi.org/10.1093/imanum/drq034
http://hdl.handle.net/11536/14771
ISSN: 0272-4979
DOI: 10.1093/imanum/drq034
期刊: IMA JOURNAL OF NUMERICAL ANALYSIS
Volume: 31
Issue: 4
起始頁: 1453
結束頁: 1467
顯示於類別:期刊論文


文件中的檔案:

  1. 000295987700008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。