標題: | A Suggestion of a New Measure of Importance of Nodes in Disease-propagation Graphs |
作者: | Liu, Siyu Chen, Chiuyuan Lin, Wu-Hsiung 應用數學系 Department of Applied Mathematics |
關鍵字: | Disease containment;wireless sensor network;graph;node importance;node centrality |
公開日期: | 1-一月-2018 |
摘要: | One of the most effective ways to protect people from being infected by infectious diseases is through vaccination. However, due to the limitation of vaccine supply, it is usually impractical to vaccinate all of the people in a community. Therefore, how to smartly select a small group of people for targeted vaccination becomes an important issue. Recently, reference [3] deploys a wireless sensor system in a high school in China to collect contacts between students happened within a disease transmission distance. Reference [3] constructs a graph model for disease propagation and presents a measure of importance of nodes, called connectivity centrality, so that targeted vaccination can be performed effectively. We find that although connectivity centrality does provide a nice measure of how a node affects the other nodes during disease propagation, it overemphasizes the contact frequency between nodes and overlooks the number of neighbors of a node. Therefore, in this paper, we suggest a new measure of importance of nodes in disease-propagation graphs. and we show that there exist an infinite number of disease-propagation graphs such that the node selected by our measure is better than that selected by [3]. |
URI: | http://dx.doi.org/10.1145/3234664.3234679 http://hdl.handle.net/11536/150982 |
DOI: | 10.1145/3234664.3234679 |
期刊: | PROCEEDINGS OF THE 2018 2ND HIGH PERFORMANCE COMPUTING AND CLUSTER TECHNOLOGIES CONFERENCE (HPCCT 2018) |
起始頁: | 48 |
結束頁: | 52 |
顯示於類別: | 會議論文 |