完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Yi-Hsuanen_US
dc.contributor.authorYen, Ya-Fenen_US
dc.contributor.authorChen, Lin-Anen_US
dc.date.accessioned2014-12-08T15:21:22Z-
dc.date.available2014-12-08T15:21:22Z-
dc.date.issued2012-04-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2011.10.012en_US
dc.identifier.urihttp://hdl.handle.net/11536/15199-
dc.description.abstractThe tolerance interval receives very much attention in literature and is widely applied in industry. However, it is generally constructed through the criterion of minimum width by Eisenhart et al. (1947). Although effort for clarification of several prediction related intervals has been made recently by Huang et al. (2010). the appropriateness of the tolerance interval for its role in industry applications is insufficiently discussed. According to manufacturers' requests, a concept of admissibility of tolerance intervals is defined in this paper and we show that these types of tolerance intervals are not admissible due to short of confidence. We further prove that a 100(1-alpha)% confidence interval of a gamma-coverage interval is admissible and is appropriate for use. (C) 2011 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectConfidence intervalen_US
dc.subjectCoverage intervalen_US
dc.subjectTolerance intervalen_US
dc.titleValidation of tolerance intervalen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2011.10.012en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume142en_US
dc.citation.issue4en_US
dc.citation.spage902en_US
dc.citation.epage907en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000299856500014-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000299856500014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。