Title: A Comprehensive Kinetical Modeling of Polymorphic Phase Distribution of Ferroelectric-Dielectrics and Interfacial Energy Effects on Negative Capacitance FETs
Authors: Tang, Y-T
Fang, C-L
Kao, Y-C
Modolo, N.
Su, C-J
Wu, T. L.
Kao, K-H
Wu, P-J
Hsaio, S-W
Useinov, A.
Su, Pin
Wu, W. F.
Huang, G-W
Shieh, J-M
Yeh, W-K
Wang, Y-H
交大名義發表
電子工程學系及電子研究所
National Chiao Tung University
Department of Electronics Engineering and Institute of Electronics
Issue Date: 1-Jan-2019
Abstract: This paper clarifies for the first time the origin of ferroelectricity in the Negative Capacitance Field-Effect Transistors (NCFETs) by molecular dynamics (MD) simulation. MD simulation considering atomic interactions between all atoms enables accurate predictions for the microstructure even at all interfaces. By incorporating the results from MD simulations into a kinetic model, it is able to predict the conditions of crystallization and phase transition during RTP and cooling processes that govern ferroelectricity in FETs. Our simulation reveals that the comparable interfacial energy between o- and t- phase, and in-plane tensile stress from metal capping or interfacial layers (ILs) enable more phase transition from t- to o-phase, and more ferroelectricity in NCFETs. Finally, design methodology to maintain the electric variation of NCFETs is also proposed
URI: http://hdl.handle.net/11536/155278
ISBN: 978-4-86348-719-2; 978-4-86348-717-8
Journal: 2019 SYMPOSIUM ON VLSI TECHNOLOGY
Begin Page: 0
End Page: 0
Appears in Collections:Conferences Paper