Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Tsu-Kuangen_US
dc.contributor.authorChen, Chih-Chiehen_US
dc.contributor.authorRen, Yien_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.date.accessioned2020-10-05T02:02:21Z-
dc.date.available2020-10-05T02:02:21Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-1204-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/155508-
dc.description.abstractThe Internet of Things (IoT) has become the hottest in both the research community and industry. Among them, Radio Frequency Identification (RFID) plays a key role in IoT. On the RFID tags estimation problem, most existing researches are trying to identifying tags' ID rather than counting the number of tags. But the number of tags is useful information in many applications such as stock management and traffic flow management. Massive tags cause taking a lot of cost and time in the estimate. So an essential problem is how to quickly and accurately estimate the number of massive tags. In order to solve this problem, this paper proposes an accuracy and efficiency hybrid scheme by decreasing time and space complexity. The results of simulation conducted to test the effectiveness of the proposed approach, which matches well with the theoretical analytical model.en_US
dc.language.isoen_USen_US
dc.subjectInternet of Thinks (IoT)en_US
dc.subjectRFIDen_US
dc.subjectTagsen_US
dc.subjectHinten_US
dc.titleID-Free Multigroup Cardinality Estimation for Massive RFID Tags in IoTen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000564625200018en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper