標題: A CMOS TRANSISTOR-ONLY 8-B 4.5-MS/S PIPELINED ANALOG-TO-DIGITAL CONVERTER USING FULLY-DIFFERENTIAL CURRENT-MODE CIRCUIT TECHNIQUES
作者: WU, CY
CHEN, CC
CHO, JJ
電子工程學系及電子研究所
Department of Electronics Engineering and Institute of Electronics
公開日期: 1-May-1995
摘要: Fully-differential current-mode circuit techniques are developed for the design of a pipelined current-mode analog-to-digital converter (IADC) in the standard CMOS digital processes. In the proposed IADC, the 1-b-per-stage architecture based on the reference nonrestoring algorithm is adopted. Thus large component ratios can be avoided and the linearity errors caused by device mismatches can be minimized. As one of the key subcircuits in the IADC, an offset-canceled high speed differential current comparator (CCMP) is proposed and analyzed. In the CCMP, the subtractions of offsets are performed in the current domain without floating capacitors. Moreover, the other key subcircuit, the current sample-and-hold amplifier (CSHA), is also developed to realize the pipeline architecture. An experimental chip for the proposed IADC has been fabricated in 0.8-mu m n-well CMOS technology. Using a single 5-V power supply, the fabricated IADC can be operated at 4,5-Ms/s conversion rate with a signal-to-noise-and-distortion-ratio (SNDR) of 51 dB (effective 8.2-b) for the input signal at 453 kHz. For 8-b resolution, the fabricated IADC can be operated at 4,5-Ms/s conversion rate with both differential nonlinearity (DNL) and integral nonlinearity (INL) below +/-0.6 LSB. The power consumption and the active chip area are 16 mW/b and 0.73 mm(2)/b, respectively.
URI: http://dx.doi.org/10.1109/4.384165
http://hdl.handle.net/11536/1938
ISSN: 0018-9200
DOI: 10.1109/4.384165
期刊: IEEE JOURNAL OF SOLID-STATE CIRCUITS
Volume: 30
Issue: 5
起始頁: 522
結束頁: 532
Appears in Collections:Articles


Files in This Item:

  1. A1995QV83200002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.