Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, C. -F.en_US
dc.contributor.authorChang, W. -W.en_US
dc.date.accessioned2014-12-08T15:28:37Z-
dc.date.available2014-12-08T15:28:37Z-
dc.date.issued2012-09-05en_US
dc.identifier.issn1751-8628en_US
dc.identifier.urihttp://dx.doi.org/10.1049/iet-com.2011.0268en_US
dc.identifier.urihttp://hdl.handle.net/11536/20694-
dc.description.abstractTransmission of convolutionally encoded multiple descriptions over noisy channels can benefit from the use of iterative source-channel decoding. The authors first modified the BCJR algorithm in a way that symbol a posteriori probabilities can be derived and used as extrinsic information to improve the iterative decoding between the source and channel decoders. The authors also formulate a recursive implementation for the source decoder that processes reliability information received on different channels and combines them with inter-description correlation to estimate the transmitted quantiser index. Simulation results are presented for two-channel scalar quantisation of Gauss-Markov sources which demonstrate the error-resilience capabilities of symbol-based iterative decoding.en_US
dc.language.isoen_USen_US
dc.titleSymbol-based iterative decoding of convolutionally encoded multiple descriptionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1049/iet-com.2011.0268en_US
dc.identifier.journalIET COMMUNICATIONSen_US
dc.citation.volume6en_US
dc.citation.issue13en_US
dc.citation.spage1868en_US
dc.citation.epage1875en_US
dc.contributor.department傳播研究所zh_TW
dc.contributor.departmentInstitute of Communication Studiesen_US
dc.identifier.wosnumberWOS:000310579100002-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000310579100002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.