標題: Higher-rank numerical ranges and Kippenhahn polynomials
作者: Gau, Hwa-Long
Wu, Pei Yuan
應用數學系
Department of Applied Mathematics
關鍵字: Higher-rank numerical range;Kippenhahn polynomial
公開日期: 1-Apr-2013
摘要: We prove that two n-by-n matrices A and B have their rank-k numerical ranges Lambda(k) (A) and Lambda(k) (B) equal to each other for all k, 1 <= k <= left perpendicularn/2right perpendicular + 1, if and only if their Kippenhahn polynomials P-A (x, y, z) equivalent to det(xRe A + yIm A + zI(n)) and p(B) (x, y, z) equivalent to det(xRe B + yIm B + zI(n)) coincide. The main tools for the proof are the Li-Sze characterization of higher-rank numerical ranges, Weyl's perturbation theorem for eigenvalues of Hermitian matrices and Bezout's theorem for the number of common zeros for two homogeneous polynomials. (C) 2012 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.laa.2012.11.017
http://hdl.handle.net/11536/21369
ISSN: 0024-3795
DOI: 10.1016/j.laa.2012.11.017
期刊: LINEAR ALGEBRA AND ITS APPLICATIONS
Volume: 438
Issue: 7
起始頁: 3054
結束頁: 3061
Appears in Collections:Articles


Files in This Item:

  1. 000315830200013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.