Full metadata record
DC FieldValueLanguage
dc.contributor.authorWU, PYen_US
dc.date.accessioned2014-12-08T15:03:41Z-
dc.date.available2014-12-08T15:03:41Z-
dc.date.issued1994-12-01en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://dx.doi.org/10.2307/2161173en_US
dc.identifier.urihttp://hdl.handle.net/11536/2226-
dc.description.abstractIt is proved that every bounded linear operator on a complex separable Hilbert space is the sum of two cyclic operators. For the product, we show that an operator T is the product of finitely many cyclic operators if and only if the kernel of T* is finite-dimensional. More precisely, if dimker T* less than or equal to k (2 less than or equal to k < infinity), then T is the product of at most k + 2 cyclic operators. We conjecture that in this case at most k cyclic operators would suffice and verify this for some special classes of operators.en_US
dc.language.isoen_USen_US
dc.subjectCYCLIC OPERATORen_US
dc.subjectMULTICYCLIC OPERATORen_US
dc.subjectTRIANGULAR OPERATORen_US
dc.titleSUMS AND PRODUCTS OF CYCLIC OPERATORSen_US
dc.typeArticleen_US
dc.identifier.doi10.2307/2161173en_US
dc.identifier.journalPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume122en_US
dc.citation.issue4en_US
dc.citation.spage1053en_US
dc.citation.epage1063en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1994PW47100013-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. A1994PW47100013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.