完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShiau, JJHen_US
dc.contributor.authorChen, CRen_US
dc.contributor.authorFeltz, CJen_US
dc.date.accessioned2014-12-08T15:35:29Z-
dc.date.available2014-12-08T15:35:29Z-
dc.date.issued2005-02-01en_US
dc.identifier.issn0748-8017en_US
dc.identifier.urihttp://dx.doi.org/10.1002/qre.604en_US
dc.identifier.urihttp://hdl.handle.net/11536/24020-
dc.description.abstractWhen a product item is tested, usually one has more information than just pass or fail. Often there are categories of failure modes. The purpose of this paper is to develop a method to monitor the fractions of the tested items falling into different categories of pass/fail modes. Using the multinomial model with Dirichlet prior, we describe the theory underlying an empirical Bayes approach to monitoring polytomous data generated in manufacturing processes. A pseudo maximum likelihood estimator (PMLE) and the method-of-moments estimator (MME) of the hyperparameters of the prior distribution are considered and compared by a simulation study. It is found that the PMLE performs slightly better than the MME. A monitoring scheme based on the marginal distributions of the observed pass/fail fractions is proposed. The average run length behavior of the proposed monitoring scheme is investigated. Finally, an example to illustrate the use of the technique is given. Copyright (C) 2004 John Wiley Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectempirical Bayesen_US
dc.subjectmultinomialen_US
dc.subjectDirichleten_US
dc.subjectpolytomousen_US
dc.subjectattribute dataen_US
dc.subjectcontrol charts quality controlen_US
dc.titleAn empirical Bayes process monitoring technique for polytomous dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/qre.604en_US
dc.identifier.journalQUALITY AND RELIABILITY ENGINEERING INTERNATIONALen_US
dc.citation.volume21en_US
dc.citation.issue1en_US
dc.citation.spage13en_US
dc.citation.epage28en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000227046200003-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000227046200003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。