標題: | WKB analysis of the Schrodinger-KdV system |
作者: | Lin, Chi-Kun Segata, Jun-ichi 應用數學系 數學建模與科學計算所(含中心) Department of Applied Mathematics Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics |
關鍵字: | Zero dispersion limit;WKB analysis;System of dispersive equations;Well-posedness |
公開日期: | 1-Jun-2014 |
摘要: | We consider the behavior of solutions to the water wave interaction equations in the limit epsilon -> 0(+). To justify the semiclassical approximation, we reduce the water wave interaction equation into some hyperbolic-dispersive system by using a modified Madelung transform. The reduced system causes loss of derivatives which prevents us to apply the classical energy method to prove the existence of solution. To overcome this difficulty we introduce a modified energy method and construct the solution to the reduced system. (c) 2014 Elsevier Inc. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.jde.2014.03.001 http://hdl.handle.net/11536/24185 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2014.03.001 |
期刊: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volume: | 256 |
Issue: | 11 |
起始頁: | 3817 |
結束頁: | 3834 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.