Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Ming-Jer | en_US |
dc.contributor.author | Tu, Kong-Chiang | en_US |
dc.contributor.author | Wang, Huan-Hsiung | en_US |
dc.contributor.author | Chen, Chuan-Li | en_US |
dc.contributor.author | Lai, Shiou-Yi | en_US |
dc.contributor.author | Liu, You-Sheng | en_US |
dc.date.accessioned | 2014-12-08T15:36:17Z | - |
dc.date.available | 2014-12-08T15:36:17Z | - |
dc.date.issued | 2014-07-01 | en_US |
dc.identifier.issn | 0018-9383 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/TED.2014.2323259 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24625 | - |
dc.description.abstract | Trapping-detrapping of a single electron via an individual trap in metal-oxide-semiconductor field-effect transistor (MOSFET) gate dielectric constitutes two-level random telegraph signals. Recent 3-D technology computer-aided design (TCAD) simulations, on an individual MOSFET, revealed that with the position of the trap as a random variable, resulting random telegraph signals relative magnitude Delta I-d/I-d in the subthreshold current at low drain voltage can have two distinct distributions: a headed one for a percolation-free channel and a tail one for a percolative channel. The latter may be effectively treated by a literature formula: (Delta I-d/I-d) = (I-loc/I-d)(2), where I-loc is the local current around the trap. In this paper, we show how to make this formula practically useful. First, we conduct 3-D TCAD simulations on a 35 x 35-nm(2) channel to provide Delta I-d/I-d for a few positions of the trap. This leads to a new statistical model in closed form, which can reproduce headed distributions. Straightforwardly, key criteria are drawn from the model, which can act as guidelines for the adequate use of the I-loc/I-d formula. Extension to threshold voltage shift counterparts, from subthreshold through transition to inversion, is successfully achieved. Importantly, use of the model may overcome the drawbacks of the statistical experiment or simulation in the field. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Fluctuations | en_US |
dc.subject | metal-oxide-semiconductor field-effect transistors (MOSFETs) | en_US |
dc.subject | nano | en_US |
dc.subject | noise | en_US |
dc.subject | percolation | en_US |
dc.subject | random telegraph signals (RTSs) | en_US |
dc.subject | technology computer-aided design (TCAD) | en_US |
dc.subject | trap | en_US |
dc.title | A Statistical Model for the Headed and Tail Distributions of Random Telegraph Signal Magnitudes in Nanoscale MOSFETs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TED.2014.2323259 | en_US |
dc.identifier.journal | IEEE TRANSACTIONS ON ELECTRON DEVICES | en_US |
dc.citation.volume | 61 | en_US |
dc.citation.issue | 7 | en_US |
dc.citation.spage | 2495 | en_US |
dc.citation.epage | 2502 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000338027200039 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.