标题: 四通道即时EEG讯号独立事件分析之FPGA实现
FPGA Implementation of Four-Channel ICA for On-line EEG Signal Separation
作者: 黄炜忠
林进灯
电控工程研究所
关键字: 瞎讯号分离;独立事件分析;资讯最大法;蓝芽;Blind source separation;Independent component analysis;Information maximization;Bluetooth
公开日期: 2008
摘要: 在真实世界的多感应器应用中,如何从混合讯号中分析出独立讯号的瞎讯号分离是一个常见的问题,例如:音讯和生医讯号处理。本论文提出一个基于资讯最大化之独立事件分析方法应用于四通道EEG讯号分离。并用定点数实现于FPGA,再藉由蓝芽传输分离后的讯号。经由实验的结果,本论文所提出的硬体方式比软体运算快56倍,且绝对相关系数和离线讯号处理比较至少有80% 。 最后,实际示范将用Altera DE2发展板展示,此设计使用16605逻辑单元。
而本论文所提出的四通道即时独立事件分析系统也加入弹性的介面用于实际EEG讯号分离的应用。用资讯最大化演算法的即时生医讯号分离其取样频率设定在64Hz,并藉由整合性的算术运算架构可让整体操作速度在68MHz。
Blind source separation of independent sources from their mixtures is a common problem for multi-sensor applications in real world, for example, speech or biomedical signal processing. This thesis presents an independent component analysis (ICA) method with information maximization (Infomax) update applied into 4-channel one-line EEG signal separation. This can be implemented on FPGA with a fixed-point number representation, and then the separated signals are transmitted via Bluetooth. As experimental results, the proposed design is faster 56 times than soft performance, and the correlation coefficients at least 80% with the absolute value are compared with off-line processing results. Finally, live demonstration is shown in the DE2 FPGA board, and the design is consisted of 16,605 logic elements.
The 4-channel On-line ICA accompanied with flexible communication interface for real EEG signal separation has been presented in this thesis. The proposed integrated mathematics architecture can allow high-speed at 68MHz and real-time biomedical signal separation with Infomax ICA at sampling rate 64 Hz.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009512609
http://hdl.handle.net/11536/38318
显示于类别:Thesis


文件中的档案:

  1. 260901.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.