Full metadata record
DC FieldValueLanguage
dc.contributor.author謝宏慶en_US
dc.contributor.authorHong-Qing Xieen_US
dc.contributor.author張正宏en_US
dc.contributor.authorC.-H. Changen_US
dc.date.accessioned2014-12-12T01:17:27Z-
dc.date.available2014-12-12T01:17:27Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009527508en_US
dc.identifier.urihttp://hdl.handle.net/11536/39013-
dc.description.abstract在巨觀系統裡,對系統而言Fluctuation 很小,所以影響並不大,系統的行為仍然可以被古典的熱力學簡單的描述。但是在微觀系統裡,Fluctuation 對系統的平均行為會產生明顯且重大的誤差。所以Fluctuation Theorem 最近的發展方向則是朝向處裡微觀系統裡的fluctuation 問題為主。在1997 年Christopher Jarzynski 對非平衡系統中的能量改變提出了一條非平衡的等式,稱作Jarzynski equality[1]。而在本篇論文裡,我們將從Fluctuation 理論與Jarzynski Equality 著手,去探討在微觀系統裡的能量轉換。zh_TW
dc.description.abstractIn macroscopic system, fluctuation of the system is very small and cannot lead to observable and significant deviations from the system’s average behavior, the system behavior also can describe by the classical thermodynamics. But in small system, the fluctuations can lead to observable and significant deviations from the system’s average behavior. So, we cannot well describe the behavior of systems by classical thermodynamics. Therefore, fluctuation theorems embody recent developments toward a unified treatment of arbitrarily large fluctuations in small systems. In 1997, Christopher Jarzynski showed nonequilibrium equality for the free energy difference, called the Jarzynski equality. In this thesis we will discuss the energy transduction in microscopic system by the fluctuation theorem and Jarzynski equality.en_US
dc.language.isozh_TWen_US
dc.subjectJarzynskizh_TW
dc.subject非平衡系統zh_TW
dc.subjectFluctuationzh_TW
dc.subject自由能zh_TW
dc.subject微觀系統zh_TW
dc.subject微小系統zh_TW
dc.subjectJarzynskien_US
dc.subjectnonequilibriumen_US
dc.subjectFluctuationen_US
dc.subjectFree energyen_US
dc.subjectMicroscopicen_US
dc.subjectsmall systemsen_US
dc.title微觀系統裡的能量轉換zh_TW
dc.titleEnergy Transduction in Microscopic Systemsen_US
dc.typeThesisen_US
dc.contributor.department物理研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 750802.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.